設復數(shù)z的共軛復數(shù)為
.
z
,已知(1+2i)
.
z
=4+3i,
(1)求復數(shù)z及
z
.
z

(2)求滿足|z1-1|=|z|的復數(shù)z1對應的點的軌跡方程.
考點:復數(shù)求模,復數(shù)代數(shù)形式的乘除運算
專題:數(shù)系的擴充和復數(shù)
分析:(1)利用復數(shù)的運算法則和共軛復數(shù)的定義即可得出;
(2)利用復數(shù)模的計算公式即可得出.
解答: 解:(1)∵(1+2i)
.
z
=4+3i,∴
.
z
=
4+3i
1+2i
=
(4+3i)(1-2i)
(1+2i)(1-2i)
=
10-5i
5
=2-i,
∴z=2+i,
z
.
z
=
2+i
2-i
=
(2+i)2
(2-i)(2+i)
=
3+4i
5
=
3
5
+
4
5
i

(2)設z1=(x,y),由|z1-1|=|z|可得|x-1+yi|=
5

即(x-1)2+y2=5.
∴復數(shù)z1對應的點的軌跡方程為(x-1)2+y2=5.
點評:本題考查了復數(shù)的運算法則和共軛復數(shù)的定義、復數(shù)模的計算公式,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,A=60°,b=1,且面積為
3
,則
2a+2b-2c
sinA+sinB-sinC
=(  )
A、
16
3
3
B、
4
39
3
C、
14
3
3
D、4
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3-3x+4,求:
(1)求該函數(shù)的單調區(qū)間;
(2)求曲線y=f(x)在點P(2,6)處的切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=2x3-3(a+1)x2+6ax(a∈R)
(1)若f(x)為R上的單調遞增函數(shù),求a的值;
(2)若x∈[1,3]時,f(x)的最小值為4,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(Ⅰ)已知a是實數(shù),i是虛數(shù)單位,
(a-i)(1-i)
i
是純虛數(shù),求a的值;
(Ⅱ)設z=
(1-4i)(1+i)+2+4i
3+4i
,求|z|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
sin(ωx+φ)-cos(ωx+φ)(ω>0,0<φ<π)的圖象過點(0,2),且函數(shù)y=f(x)圖象的兩相鄰對稱軸間的距離為
π
2

(1)當x∈[
π
6
,
6
]時,求函數(shù)f(x)的值域;
(2)設g(x)=f(x+
π
6
),求函數(shù)g(x)的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將一顆骰子先后拋擲2次,觀察向上的點數(shù),求:
(1)兩數(shù)之和為5的概率;
(2)以第一次向上點數(shù)為橫坐標x,第二次向上的點數(shù)為縱坐標y的點(x,y)滿足x2+y2小于15的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù)f(x)=
1
3
x3+bx2+cx+d(b,c,d∈R)在x=±1處有極值,且其圖象過點(0,3)
(Ⅰ)求函數(shù)y=f(x)的解析式:
(Ⅱ)設函數(shù)g(x)=f′(x)+4lnx-6x+1,若函數(shù)y=g(x)的圖象與直線y=m有三個不同的交點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

α、β均為銳角,sinα=
5
13
,cosβ=
4
5
,則sin(α+β)=
 

查看答案和解析>>

同步練習冊答案