2.已知函數(shù)f(x)=x2+2xf′(1),則曲線y=f(x)在x=1處的切線方程為2x+y+1=0.

分析 求出f′(x),由題意可知曲線在點(diǎn)(1,f(1))處的切線方程的斜率等于f′(1),所以把x=1代入到f′(x)中即可求出f′(1)的值,得到切線的斜率,然后把x=1和f′(1)的值代入到f(x)中求出切點(diǎn)的縱坐標(biāo),根據(jù)切點(diǎn)坐標(biāo)和斜率即可得到切線的方程.

解答 解:f′(x)=2x+2f′(1),
由題意可知,曲線在(1,f(1))處切線方程的斜率k=f′(1),
則f′(1)=2+2f′(1),解得f′(1)=-2,
則f(1)=1+2×(-2)=-3,所以切點(diǎn)(1,-3)
所以切線方程為:y+3=-2(x-1)化簡得2x+y+1=0.
故答案為:2x+y+1=0.

點(diǎn)評 此題考查學(xué)生會(huì)利用導(dǎo)數(shù)求過曲線上某點(diǎn)切線方程的斜率,會(huì)根據(jù)一點(diǎn)和斜率寫出直線的方程,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知f(x)=[x-1],則$\frac{1}{2011}$f(-2009.5)等于( 。
A.-1B.1C.-$\frac{2010}{2011}$D.-$\frac{2009}{2011}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若函數(shù)f(x)=$\left\{\begin{array}{l}{1-\sqrt{x}(x≥0)}\\{{2}^{x}(x<0)}\end{array}\right.$,則f(f(-2))=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.判斷下列說法:
①已知用二分法求方程3x+3x-8=0在x∈(1,2)內(nèi)的近似解過程中得:f(1)<0,f(1.5)>0,f(1.25)<0,則方程的根落在區(qū)間(1.25,1.5);
②y=tanx在它的定義域內(nèi)是增函數(shù);
③函數(shù)y=$\frac{tanx}{1-tanx}$的最小正周期為π
④函數(shù)f(x)=$\frac{1+sinx-cosx}{1+sinx+cosx}$是奇函數(shù);
⑤已知$\overrightarrow{AB}$=(x,2x),$\overrightarrow{AC}$=(-3x,2),若∠BAC是鈍角,則x的取值范圍是x<0或x>$\frac{4}{3}$;
其中說法正確的是①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)y=$\sqrt{3}$sin4x+cos4x.
(1)求它的周期,最大值,最小值;
(2)求它的單調(diào)遞增區(qū)間;
(3)它可以由y=sinx的圖象經(jīng)過怎樣的變化得到?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.計(jì)算下列定積分,$\int_0^π{(cosx+2x)}$dx=π2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若函數(shù)f(x)=sin22x(x∈R)是( 。
A.最小正周期為$\frac{π}{2}$的偶函數(shù)B.最小正周期為$\frac{π}{2}$的奇函數(shù)
C.最小正周期為π的偶函數(shù)D.最小正周期為π的奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)ξ是一個(gè)離散型隨機(jī)變量,其分布列如下表:
ξ-101
P0.51-$\frac{3q}{2}$q2
則D(ξ)=$\frac{11}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.(1)已知 f(x)=|x+2|+|x-4|的最小值是n,則二項(xiàng)式 (x-$\frac{1}{x}$)n展開式中x2項(xiàng)的系數(shù)為多少.
(2)某校高三年級(jí)從2名教師和4名學(xué)生中選出3人,分別組建成不同的兩支球隊(duì)進(jìn)行雙循環(huán)師生友誼賽.要求每支球隊(duì)中有且只有一名教師,則不同的比賽方案共有幾種.

查看答案和解析>>

同步練習(xí)冊答案