分析 (1)由兩向量的坐標(biāo)及兩向量平行的條件列出關(guān)系式,再利用三角形面積公式表示出S,利用余弦定理列出關(guān)系式,代入計(jì)算求出tanA的值,即可確定出A的度數(shù);
(2)已知k利用正弦定理化簡(jiǎn),把表示出的C代入并利用兩角和與差的正弦函數(shù)公式化為一個(gè)角的正弦函數(shù),由正弦函數(shù)的值域確定出k的范圍.
解答 解:(1)∵在△ABC中,△ABC的面積為S,向量$\overrightarrow{m}$=(4,b2+c2-a2),$\overrightarrow{n}$=(1,S),且$\overrightarrow{m}$∥$\overrightarrow{n}$,
∴$\frac{4}{1}$=$\frac{^{2}+{c}^{2}-{a}^{2}}{S}$,即4S=b2+c2-a2,
∵S=$\frac{1}{2}$bcsinA,b2+c2-a2=2bccosA,
∴2bcsinA=2bccosA,即sinA=cosA,
∴tanA=1,
則A=45°;
(2)根據(jù)正弦定理得:k=$\frac{\sqrt{2}b-c}{a}$=$\frac{\sqrt{2}sinB-sinC}{sinA}$=$\frac{\sqrt{2}sinB-sinC}{sin45°}$=2sinB-$\sqrt{2}$sinC,
∵C=180°-(A+B)=135°-B,
∴k=2sinB-$\sqrt{2}$sin(135°-B)=2sinB-$\sqrt{2}$($\frac{\sqrt{2}}{2}$cosB-$\frac{\sqrt{2}}{2}$sinB)=3sinB-cosB=$\sqrt{10}$sin(B-D)(其中sinD=$\frac{1}{\sqrt{10}}$,cosD=$\frac{3}{\sqrt{10}}$,tanD=$\frac{1}{3}$),
∵-1≤sin(B-D)≤1,
∴-$\sqrt{10}$≤k≤$\sqrt{10}$.
點(diǎn)評(píng) 此題考查了正弦、余弦定理,平面向量的數(shù)量積運(yùn)算,以及三角形面積公式,熟練掌握定理及公式是解本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 是奇函數(shù),但不是偶函數(shù) | B. | 是偶函數(shù),但不是奇函數(shù) | ||
C. | 既是奇函數(shù),又是偶函數(shù) | D. | 既不是奇函數(shù),又不是偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com