【題目】如圖,正方形中, 交于點(diǎn),現(xiàn)將沿折起得到三棱錐, , 分別是, 的中點(diǎn).

(1)求證: ;

(2)若三棱錐的最大體積為,當(dāng)三棱錐的體積為,且二面角為銳角時(shí),求二面角的正弦值.

【答案】(1)證明見(jiàn)解析;(2) .

【解析】試題分析:(1)根據(jù)折疊前幾何關(guān)系得, ,再根據(jù)線面垂直判定定理得平面,即得;(2)先確定三棱錐的取最大體積的條件:三棱錐的高為,再根據(jù)三棱錐體積公式得三棱錐的體積為時(shí)條件: 平面,最后根據(jù)等體積法求三棱錐的體積.

試題解析:(1)依題意易知, , ,∴平面

又∵平面,∴.

(2)當(dāng)體積最大時(shí)三棱錐的高為,當(dāng)體積為時(shí),高為

中, ,作,∴,∴,

為等邊三角形,∴重合,即平面,

易知.

平面,∴,∴

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, , 中點(diǎn),且平面, .已知.

(1)求直線所成角;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家,某市為了制定合理的節(jié)水方案,對(duì)居民用水情況進(jìn)行調(diào)查,通過(guò)抽樣,獲得某年100為居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照分成9組,制成了如圖所示的頻率分布直方圖.

(1)求直方圖的的值;

(2)設(shè)該市有30萬(wàn)居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),說(shuō)明理由.

(3)估計(jì)居民月用水量的中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某連鎖經(jīng)營(yíng)公司所屬5個(gè)零售店某月的銷(xiāo)售額和利潤(rùn)額如下表:

商店名稱

A

B

C

D

E

銷(xiāo)售額x/千萬(wàn)元

3

5

6

7

9

利潤(rùn)額y/百萬(wàn)元

2

3

3

4

5

1)畫(huà)出散點(diǎn)圖,觀察散點(diǎn)圖,說(shuō)明兩個(gè)變量是否線性相關(guān);

2)用最小二乘法計(jì)算利潤(rùn)額y對(duì)銷(xiāo)售額x的線性回歸方程;

3)當(dāng)銷(xiāo)售額為4千萬(wàn)元時(shí),估計(jì)利潤(rùn)額的大小.

(參考公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】墻上有一壁畫(huà),最高點(diǎn)處離地面米,最低點(diǎn)處離地面米,距離墻米處設(shè)有防護(hù)欄,觀察者從離地面高米的處觀賞它.

1)當(dāng)時(shí),觀察者離墻多遠(yuǎn)時(shí),視角最大?

2)若,視角的正切值恒為,觀察者離墻的距離應(yīng)在什么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在圓內(nèi)有一點(diǎn),為圓上一動(dòng)點(diǎn),線段的垂直平分線與的連線交于點(diǎn)

(Ⅰ)求點(diǎn)的軌跡方程.

(Ⅱ)若動(dòng)直線與點(diǎn)的軌跡交于、兩點(diǎn),且以為直徑的圓恒過(guò)坐標(biāo)原點(diǎn).問(wèn)是否存在一個(gè)定圓與動(dòng)直線總相切.若存在,求出該定圓的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).

(Ⅰ)求的值;

(Ⅱ)寫(xiě)出函數(shù)的單調(diào)遞減區(qū)間(無(wú)需證明) ;

(Ⅲ)若實(shí)數(shù)滿足,則稱的二階不動(dòng)點(diǎn),求函數(shù)的二階不動(dòng)點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了調(diào)查觀眾對(duì)某熱播電視劇的喜愛(ài)程度,某電視臺(tái)在甲、乙兩地各隨機(jī)抽取了8名觀眾作問(wèn)卷調(diào)查,得分統(tǒng)計(jì)結(jié)果如圖所示:

1)計(jì)算甲、乙兩地被抽取的觀眾問(wèn)卷的平均得分;

(2)計(jì)算甲、乙兩地被抽取的觀眾問(wèn)卷得分的方差;

(3)若從甲地被抽取的8名觀眾中再邀請(qǐng)2名進(jìn)行深入調(diào)研,求這2名觀眾中恰有1人的問(wèn)卷調(diào)查成績(jī)?cè)?0分以上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某車(chē)間的一臺(tái)機(jī)床生產(chǎn)出一批零件,現(xiàn)從中抽取8件,將其編為, ,…, ,測(cè)量其長(zhǎng)度(單位: ),得到下表中數(shù)據(jù):

編號(hào)

長(zhǎng)度

1.49

1.46

1.51

1.51

1.53

1.51

1.47

1.51

其中長(zhǎng)度在區(qū)間內(nèi)的零件為一等品.

(1)從上述8個(gè)零件中,隨機(jī)抽取一個(gè),求這個(gè)零件為一等品的概率;

(2)從一等品零件中,隨機(jī)抽取2個(gè).

①用零件的編號(hào)列出所有可能的抽取結(jié)果;

②求這2個(gè)零件長(zhǎng)度相等的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案