設(shè)函數(shù)f(x)=(1+x)2-2ln(1+x).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)0<a<2時,求函數(shù)g(x)=f(x)-x2-ax-1在區(qū)間[0,3]的最小值.
本小題滿分(14分)
(Ⅰ)∵f′(x)=2(x+1)-
2
x+1
=
2x(x+2)
x+1
.
(2分)
由f'(x)>0,得-2<x<-1或x>0;由f'(x)<0,得x<-2或-1<x<0.
又∵f(x)定義域為(-1,+∞),
∴所以函數(shù)f(x)的單調(diào)遞增區(qū)間為(0,+∞),單調(diào)遞減區(qū)間為(-1,0)(5分)
(Ⅱ)由g(x)=f(x)-x2-ax-1
即g(x)=2x-ax-2ln(1+x),g′(x)=2-a-
2
x+1
=
(2-a)x-a
x+1
(7分)
令g'(x)=0由0<a<2及x>-1,得x=
a
2-a

且當(dāng)x=
a
2-a
時f(x)取得極小值.(8分)
∵求f(x)在區(qū)間[0,3]上最小值
∴只需討論
a
2-a
與3的大小
①當(dāng)0<a<
3
2
a
2-a
<3
所以函數(shù)g(x)在[0,3]上最小值為g(
a
2-a
)=a-2ln
2
2-a
(10分)
②當(dāng)a=
3
2
a
2-a
=3
所以函數(shù)g(x)在[0,3]上最小值為g(3)=
3
2
-4ln2
(11分)
③當(dāng)a>
3
2
a
2-a
>3
所以函數(shù)g(x)在[0,3]上最小值為g(3)=
3
2
-4ln2
(13分)
所以,綜上可知當(dāng)0<a<
3
2
時,函數(shù)g(x)在[0,3]上最小值為a-2ln
2
2-a
;
當(dāng)a≥
3
2
時,函數(shù)g(x)在[0,3]上最小值為
3
2
-4ln2
.(14分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax3-3x+1(x∈R),若對于任意的x∈[-1,1]都有f(x)≥0成立,則實數(shù)a的值為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•安徽)設(shè)函數(shù)f(x)=ax-(1+a2)x2,其中a>0,區(qū)間I={x|f(x)>0}
(Ⅰ)求I的長度(注:區(qū)間(a,β)的長度定義為β-α);
(Ⅱ)給定常數(shù)k∈(0,1),當(dāng)1-k≤a≤1+k時,求I長度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•浦東新區(qū)二模)記函數(shù)f(x)=f1(x),f(f(x))=f2(x),它們定義域的交集為D,若對任意的x∈D,f2(x)=x,則稱f(x)是集合M的元素.
(1)判斷函數(shù)f(x)=-x+1,g(x)=2x-1是否是M的元素;
(2)設(shè)函數(shù)f(x)=log2(1-2x),求f(x)的反函數(shù)f-1(x),并判斷f(x)是否是M的元素;
(3)f(x)=
axx+b
∈M(a<0),求使f(x)<1成立的x的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

記函數(shù)f(x)=f1(x),f(f(x))=f2(x),它們定義域的交集為D,若對任意的x∈D,f2(x)=x,則稱f(x)是集合M的元素,
例如f(x)=-x+1,對任意x∈R,f2(x)=f(f(x))=-(-x+1)+1=x,故f(x)=-x+1∈M.
(1)設(shè)函數(shù)f(x)=log2(1-2x),判斷f(x)是否是M的元素,并求f(x)的反函數(shù)f-1(x);
(2)f(x)=
axx+b
∈M
(a<0),求使f(x)<1成立的x的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)設(shè)函數(shù)f(x)=xlog2x+(1-x)log2(1-x)(0<x<1),求f(x)的最小值.
(2)設(shè)正數(shù)P1,P2,P3,…P2n滿足P1+P2+…P2n=1,求證:P1log2P1+P2log2P2+P3log2P3+…+P2nlog2P2n≥-n.

查看答案和解析>>

同步練習(xí)冊答案