14.某學(xué)生對(duì)其親屬30人的飲食習(xí)慣進(jìn)行了一次調(diào)查,并用如圖所示的莖葉圖表示30人的飲食指數(shù).(說明:圖中飲食指數(shù)低于70的人,飲食以蔬菜為主;飲食指數(shù)高于70的人,飲食以肉食為主)
(1)根據(jù)以上數(shù)據(jù)完成下列2×2列聯(lián)表:
 主食蔬菜 主食肉類合計(jì)
50歲以下   
50歲以上   
合計(jì)   
(2)能否有99%的把握認(rèn)為其親屬的飲食習(xí)慣與年齡有關(guān)?并寫出簡要分析.
P(K2≥k00.0500.0100.001
k03.8416.63510.828
附表:
${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

分析 (1)根據(jù)莖葉圖,填寫2×2列聯(lián)表;
(2)根據(jù)公式計(jì)算K2的值,比較數(shù)表得出結(jié)論.

解答 解:(1)根據(jù)莖葉圖,填寫2×2列聯(lián)表如下:

主食蔬菜主食肉食合計(jì)
50歲以下4812
50歲以上16218
合計(jì)201030
(2)由公式得,K2=$\frac{30{×(4×2-16×8)}^{2}}{12×18×20×10}$=10>6.635,
所以有99%的把握認(rèn)為飲食習(xí)慣與年齡相關(guān).

點(diǎn)評(píng) 本題考查了莖葉圖與2×2列聯(lián)表以及獨(dú)立性檢驗(yàn)的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}kx+2,x≤0\\-lnx,x>0\end{array}$,則下列關(guān)于y=f[f(x)]-2的零點(diǎn)個(gè)數(shù)判別正確的是( 。
A.當(dāng)k=0時(shí),有無數(shù)個(gè)零點(diǎn)B.當(dāng)k<0時(shí),有3個(gè)零點(diǎn)
C.當(dāng)k>0時(shí),有3個(gè)零點(diǎn)D.無論k取何值,都有4個(gè)零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.對(duì)于函數(shù)y=f(x)(x∈D),若同時(shí)滿足下列條件:①f(x)在D內(nèi)是單調(diào)函數(shù);②存在區(qū)間[a,b]⊆D,使f(x)在[a,b]上的值域?yàn)閇a,b],那么y=f(x)叫做閉函數(shù).
(1)判斷函數(shù)f(x)=x2是否為閉函數(shù),并說明理由;
(2)是否存在實(shí)數(shù)a,b使函數(shù)y=-x3+1是閉函數(shù);
(3)若y=k+$\sqrt{x+2}$為閉函數(shù),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知圓O:x2+y2=16,在圓O上隨機(jī)取兩點(diǎn)A、B,使|AB|≤4$\sqrt{3}$的概率為(  )
A.$\frac{9}{15}$B.$\frac{1}{4}$C.$\frac{3}{5}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知兩個(gè)等差數(shù)列{an},{bn},它們的前n項(xiàng)和分別記為Sn,Tn,若$\frac{S_n}{T_n}=\frac{n+3}{n+1}$,則$\frac{{{a_{10}}}}{{{b_{10}}}}$=$\frac{11}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.下列命題中,正確的是(1)、(2)、(3)
(1)平面向量$\vec a$與$\vec b$的夾角為60°,$\vec a=(2,0)$,$|{\vec b}|=1$,則$|{\vec a+\vec b}|$=$\sqrt{7}$
(2)已知$\overrightarrow a=({sinθ,\sqrt{1+cosθ}}),\overrightarrow b=({1,\sqrt{1-cosθ}})$,其中θ∈(π,$\frac{3π}{2}$),則$\overrightarrow a⊥\overrightarrow b$
(3)對(duì)于x∈R,絕對(duì)值不等式|x+10|-|x-2|≥8的解集為[0,+∞);
(4)在Rt△ABC中,∠C=90°,AC=4,則$\overrightarrow{AB}•\overrightarrow{AC}=-16$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知sinα+cosα=-$\frac{1}{2}$,α∈(0,π),則tanα=( 。
A.$\frac{-4+\sqrt{7}}{3}$B.$\frac{-4±\sqrt{7}}{3}$C.$\frac{4-\sqrt{7}}{3}$D.$\frac{-4-\sqrt{7}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)函數(shù)f(x)=sin(ωx+φ),其中ω>0,|φ|<$\frac{π}{2}$,若cos$\frac{π}{3}cosφ-sin\frac{2π}{3}$sinφ=0,且圖象的兩條對(duì)稱軸間的最近距離是$\frac{π}{2}$.
(1)求函數(shù)f(x)的解析式;
(2)若A,B,C是△ABC的三個(gè)內(nèi)角,且f(A)=-1,求sinB+sinC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在△ABC中,已知cosA=$\frac{3}{5}$,cosB=$\frac{15}{17}$,則cosC等于( 。
A.-$\frac{13}{85}$B.$\frac{13}{85}$C.-$\frac{77}{85}$D.$\frac{77}{85}$

查看答案和解析>>

同步練習(xí)冊答案