【題目】已知正方體有8個不同頂點,現(xiàn)任意選擇其中4個不同頂點,然后將它們兩兩相連,可組成平面圖形成空間幾何體.在組成的空間幾何體中,可以是下列空間幾何體中的________.(寫出所有正確結論的編號)

①每個面都是直角三角形的四面體;

②每個面都是等邊三角形的四面體;

③每個面都是全等的直角三角形的四面體;

④有三個面為等腰直角三角形,有一個面為等邊三角形的四面體.

【答案】①②④

【解析】

畫出正方體的圖形,在幾何體中找出滿足結論的圖形即可.

解:

①每個面都是直角三角形的四面體;如:EABC,所以①正確;
②每個面都是等邊三角形的四面體;如EBGD,所以②正確;
③每個面都是全等的直角三角形的四面體:這是不可能的,③錯誤;
④有三個面為等腰直角三角形,有一個面為等邊三角形的四面體.如:ABDE,所以④正確;
故答案為:①②④.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),上的動點,點滿足,點的軌跡為曲線

(1)求曲線的直角坐標方程;

(2)在以為極點,軸的正半軸為極軸的極坐標系中,射線的異于極點的交點為,與的異于極點的交點為,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.

(1)求直線的普通方程和曲線的直角坐標方程;

(2)若直線與曲線相交于兩點,設點,已知,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)

(I)討論的單調性;

II)若有兩個極值點,記過點的直線的斜率為,問:是否存在,使得?若存在,求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=4alnx3x,且不等式fx+1≥4ax3ex,在(0+∞)上恒成立,則實數(shù)a的取值范圍(

A.B.C.(﹣,0D.(﹣,0]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐PABCD中,△PAD為正三角形,ABCD,AB=2CD,∠BAD=90°,PACD,E為棱PB的中點

1)求證:平面PAB⊥平面CDE;

2)若AD=CD=2,求點P到平面ADE的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)是定義在(0,+∞)上的可導函數(shù),滿足f1)=2,且,則不等式fx)﹣e33x1的解集為(  )

A.0,1B.0eC.1,+∞D.e,+∞

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x3-3x2+1,g(x)=,若方程g[f(x)]-a=0(a>0)有6個實數(shù)根(互不相同),則實數(shù)a的取值范圍是______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】ABC中,角A,B,C的對邊分別為a,b,c,且2ccosB2a+b

1)求角C的大;

2)若ABC的面積等于,求ab的最小值.

查看答案和解析>>

同步練習冊答案