已知函數(shù) .
(Ⅰ)若曲線y=f(x)在(1,f(1))處的切線與直線x+y+1=0平行,求a的值;
(Ⅱ)若a>0,函數(shù)y=f(x)在區(qū)間(a,a 2-3)上存在極值,求a的取值范圍;
(Ⅲ)若a>2,求證:函數(shù)y=f(x)在(0,2)上恰有一個零點.
(1) (2)
(3)先結(jié)合導(dǎo)數(shù)分析證明函數(shù)f(x)在(0,2)內(nèi)單調(diào)遞減.那么得到結(jié)論。
【解析】
試題分析:.解:(Ⅰ), 1分
, 2分
因為曲線y=f(x)在(1,f(1))處的切線與直線x+y+1=0平行
所以, 3分
所以. 4分
(Ⅱ)令, 5分
即,所以 或. 6分
因為a>0,所以不在區(qū)間(a,a2-3)內(nèi),
要使函數(shù)在區(qū)間(a,a 2-3)上存在極值,只需. 7分
所以. 9分
(Ⅲ)證明:令,所以 或.
因為a>2,所以2a>4, 10分
所以在(0,2)上恒成立,函數(shù)f(x)在(0,2)內(nèi)單調(diào)遞減.
又因為,, 11分
所以f(x)在(0,2)上恰有一個零點. 12分
考點:導(dǎo)數(shù)的運用
點評:主要考查了導(dǎo)數(shù)在研究函數(shù)中的運用,屬于基礎(chǔ)題。
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
3 |
π |
24 |
5π |
24 |
π |
24 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
11π |
6 |
| ||
2 |
3 |
π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
xn+2 | xn-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
π |
2 |
A、f(x)=2sin(
| ||||
B、f(x)=2sin(
| ||||
C、f(x)=2sin(2x-
| ||||
D、f(x)=2sin(2x+
|
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com