20.不等式x2≤4的解集是[-2,2].

分析 根據(jù)題意,先將不等式x2≤4變形為x2-4≤0,求出其對應(yīng)二次方程x2-4=0的兩個(gè)根,分析其對應(yīng)的二次函數(shù)y=x2-4的性質(zhì),即可得答案.

解答 解:根據(jù)題意,對于不等式x2≤4,可以變形為x2-4≤0,
其對應(yīng)的二次方程為x2-4=0,解可得x=±2,
而二次函數(shù)y=x2-4開口方向向上,
則不等式x2>2的解集是[-2,2];
故答案為:[-2,2].

點(diǎn)評 本題考查一元二次不等式的解法,解題時(shí)要結(jié)合一元二次函數(shù)的性質(zhì)進(jìn)行分析,注意答案寫成集合或區(qū)間的形式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.求函數(shù)f(t)=t+$\frac{1}{t+3}$在[6,8]內(nèi)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.點(diǎn)M(5,3)到拋物線y=ax2的準(zhǔn)線的距離為6,那么拋物線的標(biāo)準(zhǔn)方程是( 。
A.x2=$\frac{1}{12}$yB.x2=$\frac{1}{12}$y或x2=-$\frac{1}{36}$y
C.x2=-$\frac{1}{36}$yD.x2=12或x2=-36y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)θ∈(0,$\frac{π}{4}$),則二次曲線$\frac{{x}^{2}}{tanθ}$-tanθ•y2=1的離心率的取值范圍為(  )
A.(1,$\sqrt{2}$]B.($\frac{1}{2}$,$\frac{\sqrt{2}}{2}$)C.(1,$\sqrt{2}$)D.($\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.化簡:
(1)$\frac{cos(α-π)}{sin(π-α)}$•sin(α-$\frac{π}{2}$)cos($\frac{π}{2}$+α);
(2)$\frac{cos(2π-α)sin(π+α)}{sin(\frac{π}{2}+α)tan(3π-α)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.計(jì)算$\fracrpjpxnt{dx}$${∫}_{\frac{1}{x}}^{\sqrt{x}}$cost2dt(x>0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知如圖所示的非零向量$\overrightarrow{a}$,$\overrightarrow$,請分別作出滿足下列條件的向量$\overrightarrow{c}$.
(1)$\overrightarrow{c}$=2$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$;
(2)$\overrightarrow{c}$=$\frac{1}{2}$$\overrightarrow{a}$-2$\overrightarrow$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.四面體ABCD中,AD⊥平面ABC,AB⊥BC,E,F(xiàn)分別為AC,BD的中點(diǎn),AB=AD=2,∠BAC=60°.
(1)求證:CD⊥AF;
(2)求EF與平面BCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.把直徑分別為6cm,8cm,10cm的三個(gè)銅球熔制成一個(gè)較大的銅球,再把球削成一個(gè)棱長.最大的正方體,求此正方體的體積.

查看答案和解析>>

同步練習(xí)冊答案