分析 根據(jù)題意,先將不等式x2≤4變形為x2-4≤0,求出其對應(yīng)二次方程x2-4=0的兩個(gè)根,分析其對應(yīng)的二次函數(shù)y=x2-4的性質(zhì),即可得答案.
解答 解:根據(jù)題意,對于不等式x2≤4,可以變形為x2-4≤0,
其對應(yīng)的二次方程為x2-4=0,解可得x=±2,
而二次函數(shù)y=x2-4開口方向向上,
則不等式x2>2的解集是[-2,2];
故答案為:[-2,2].
點(diǎn)評 本題考查一元二次不等式的解法,解題時(shí)要結(jié)合一元二次函數(shù)的性質(zhì)進(jìn)行分析,注意答案寫成集合或區(qū)間的形式.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x2=$\frac{1}{12}$y | B. | x2=$\frac{1}{12}$y或x2=-$\frac{1}{36}$y | ||
C. | x2=-$\frac{1}{36}$y | D. | x2=12或x2=-36y |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,$\sqrt{2}$] | B. | ($\frac{1}{2}$,$\frac{\sqrt{2}}{2}$) | C. | (1,$\sqrt{2}$) | D. | ($\sqrt{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com