設(shè):“中至少有一個等于”;:“”,那么的真假是(    )

A.真        B.假        C.真        D.

 

【答案】

【解析】主要考查充要條件的概念及其判定方法、簡單邏輯聯(lián)結(jié)詞。

解:因為:“中至少有一個等于”是真命題,

:“”是假命題,所以選B。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某中學(xué)組建了A、B、C、D、E五個不同的社團(tuán)組織,為培養(yǎng)學(xué)生的興趣愛好,要求每個學(xué)生必須參加且只能參加一個社團(tuán),假定某班級的甲、乙、丙三名學(xué)生對這五個社團(tuán)的選擇是等可能的.
(1)求甲、乙、丙三名學(xué)生中至少有兩人參加同一社團(tuán)的概率;
(2)(文科)求甲、乙、丙三人中恰有兩人參加A社團(tuán)的概率;
(3)(理科)設(shè)隨機(jī)變量ξ為甲、乙、丙這三個學(xué)生參加A社團(tuán)的人數(shù),求ξ的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)校高一年級組建了A、B、C、D四個不同的“研究性學(xué)習(xí)”小組,要求高一年級學(xué)生必須參加,且只能參加一個小組的活動.假定某班的甲、乙、丙三名同學(xué)對這四個小組的選擇是等可能的.
(1)求甲、乙、丙三名同學(xué)選擇四個小組的所有選法種數(shù);
(2)求甲、乙、丙三名同學(xué)中至少有二人參加同一組活動的概率;
(3)設(shè)隨機(jī)變量X為甲、乙、丙三名同學(xué)參加A小組活動的人數(shù),求X的分布列與數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我市某大學(xué)組建了A、B、C、D、E五個不同的社團(tuán)組織,為培養(yǎng)學(xué)生的興趣愛好,要求每個學(xué)生必須參加且只能參加一個社團(tuán),假定某寢室的甲、乙、丙三名學(xué)生對這五個社團(tuán)的選擇是等可能的.   
(1)求甲、乙、丙三名學(xué)生中至少有兩人參加同一社團(tuán)的概率;
(2)設(shè)隨機(jī)變量ξ為甲、乙、丙這三個學(xué)生參加A或B社團(tuán)的人數(shù),求ξ的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為征求個人所得稅修改建議,某機(jī)構(gòu)對居民的月收入調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分布直方圖(每個分組包括左端點(diǎn),不包括右端點(diǎn),如第一組表示收入在[1000,1500)).
(I)求居民月收入在[3000,4000)的頻率;
(II)為了分析居民的收入與年齡、職業(yè)等方面的關(guān)系,必須按月收入再從這10000人中用分層抽樣方法抽出100人作進(jìn)一步分析,設(shè)月收入在[3500,4000)的這段應(yīng)抽人數(shù)為m,求m的值.
(III)若從(II)中被抽取的m人中再選派兩人參加一項慈善活動,求其中的甲、乙兩人至少有一個被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:高中數(shù)學(xué)綜合題 題型:044

設(shè)人的某一特性(如人臉的方與圓)是由他的一對基因所決定的,以A表示顯性基因,H表示隱性基因.人的基因類型與顯露出來的特性如下表:

基因類型

純顯性AA

純隱性HH

混合型(AH或HA)

顯露出來的特性

方臉

圓臉

方臉

假設(shè)小孩的基因從父母的身上等可能各得到一個基因,有一小孩的父母的這對基因都是混合型,求:

(1)這對父母生一個小孩是方臉的概率是多少?

(2)這對父母生2個小孩中至少有一個是方臉的概率是多少?

查看答案和解析>>

同步練習(xí)冊答案