對于三次函數(shù)),定義:設f″(x)是函數(shù)yf′(x)的導數(shù),若方程f″(x)=0有實數(shù)解x0,則稱點(x0fx0))為函數(shù)的“拐點”.有同學發(fā)現(xiàn):“任何一個三次函數(shù)都有‘拐點’;任何一個三次函數(shù)都有對稱中心;且‘拐點’就是對稱中心.”請你將這一發(fā)現(xiàn)為條件,若函數(shù),則=( )

A.2010             B.2011             C.2012             D.2013

 

【答案】

A

【解析】

試題分析:因為函數(shù) =,

所以令h(x)=,m(x)=,則g(x)=h(x)+m(x).

則h′(x)=x2-x+3,h″(x)=2x-1,令h″(x)=0,可得x=,故h(x)的對稱中心為(,1).

設點p(x0,y0)為曲線上任意一點,則點P關于(,1)的對稱點P′(1-x0,2-y0)也在曲線上,∴h(1-x0)=2-y,∴h(x0)+h(1-x0)=y0+(2-y0)=2.

所以

==1005×2=2010.

由于函數(shù)m(x)=的對稱中心為(,0),可得m(x0)+m(1-x0)=0.

==1005×0=0.

所以= +

=2010+0=2010,故答案為2010.

考點:本題主要考查函數(shù)的概念,函數(shù)圖象的對稱性,導數(shù)的計算。

點評:難題,運用化歸與轉(zhuǎn)化的數(shù)學思想方法,將函數(shù)g(x)的研究進行拆分,簡化了解題過程。解答此類題目,心理素質(zhì)首先要過關,不畏難,靜心思考。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(Ⅰ)已知函數(shù)f(x)=x3-x,其圖象記為曲線C.
(i)求函數(shù)f(x)的單調(diào)區(qū)間;
(ii)證明:若對于任意非零實數(shù)x1,曲線C與其在點P1(x1,f(x1))處的切線交于另一點P2(x2,f(x2)),曲線C與其在點P2(x2,f(x2))處的切線交于另一點P3(x3,f(x3)),線段P1P2,P2P3與曲線C所圍成封閉圖形的面積記為S1,S2.則
S1S2
為定值;
(Ⅱ)對于一般的三次函數(shù)g(x)=ax3+bx2+cx+d(a≠0),請給出類似于(Ⅰ)(ii)的正確命題,并予以證明.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(Ⅰ)已知函數(shù)f(x)=x3-x,其圖象記為曲線C.
(i)求函數(shù)f(x)的單調(diào)區(qū)間;
(ii)證明:若對于任意非零實數(shù)x1,曲線C與其在點P1(x1,f(x1))處的切線交于另一點P2(x2,f(x2)),曲線C與其在點P2(x2,f(x2))處的切線交于另一點P3(x3,f(x3)),線段P1P2,P2P3與曲線C所圍成封閉圖形的面積記為S1,S2.則
S1
S2
為定值;
(Ⅱ)對于一般的三次函數(shù)g(x)=ax3+bx2+cx+d(a≠0),請給出類似于(Ⅰ)(ii)的正確命題,并予以證明.

查看答案和解析>>

科目:高中數(shù)學 來源:福建省高考真題 題型:解答題

(Ⅰ)已知函數(shù)f(x)=x3-x,其圖象記為曲線C,
(ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(ⅱ)證明:若對于任意非零實數(shù)x1,曲線C與其在點P1(x1,f(x1))處的切線交于另一點P2(x2,f(x2)),曲線C與其在點P2處的切線交于另一點P3(x3,f(x3)),線段P1P2,P2P3與曲線C所圍成封閉圖形的面積分別記為S1,S2,則為定值;
(Ⅱ)對于一般的三次函數(shù)g(x)=ax3+bx2+cx+d(a≠0),請給出類似于(Ⅰ)(ⅱ)的正確命題,并予以證明.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年新課標高三(上)數(shù)學一輪復習單元驗收2(文科)(解析版) 題型:解答題

(Ⅰ)已知函數(shù)f(x)=x3-x,其圖象記為曲線C.
(i)求函數(shù)f(x)的單調(diào)區(qū)間;
(ii)證明:若對于任意非零實數(shù)x1,曲線C與其在點P1(x1,f(x1))處的切線交于另一點P2(x2,f(x2)),曲線C與其在點P2(x2,f(x2))處的切線交于另一點P3(x3,f(x3)),線段P1P2,P2P3與曲線C所圍成封閉圖形的面積記為S1,S2.則為定值;
(Ⅱ)對于一般的三次函數(shù)g(x)=ax3+bx2+cx+d(a≠0),請給出類似于(Ⅰ)(ii)的正確命題,并予以證明.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年新課標高三(上)數(shù)學一輪復習單元驗收2(理科)(解析版) 題型:解答題

(Ⅰ)已知函數(shù)f(x)=x3-x,其圖象記為曲線C.
(i)求函數(shù)f(x)的單調(diào)區(qū)間;
(ii)證明:若對于任意非零實數(shù)x1,曲線C與其在點P1(x1,f(x1))處的切線交于另一點P2(x2,f(x2)),曲線C與其在點P2(x2,f(x2))處的切線交于另一點P3(x3,f(x3)),線段P1P2,P2P3與曲線C所圍成封閉圖形的面積記為S1,S2.則為定值;
(Ⅱ)對于一般的三次函數(shù)g(x)=ax3+bx2+cx+d(a≠0),請給出類似于(Ⅰ)(ii)的正確命題,并予以證明.

查看答案和解析>>

同步練習冊答案