設(shè)數(shù)列{an}是有窮等差數(shù)列,給出下面數(shù)表:
上表共有n行,其中第1行的n個(gè)數(shù)為a1,a2,a3…an,從第二行起,每行中的每一個(gè)數(shù)都等于它肩上兩數(shù)之和.記表中各行的數(shù)的平均數(shù)(按自上而下的順序)分別為b1,b2,b3…bn. (1)求證:數(shù)列b1,b2,b3…bn成等比數(shù)列;
(2)若ak=2k﹣1(k=1,2,…,n),求和
(1)證明:由題設(shè)易知,=
=
設(shè)表中的第k(1≤k≤n﹣1)行的數(shù)為c1,c2…cn﹣k+1,顯然c1,c2…c n﹣k+1,成等差數(shù)列,
則它的第k+1行的數(shù)是c1+c2,c2+c3…c n﹣k+c n﹣k+1也成等差數(shù)列,
它們的平均數(shù)分別是,
b k+1=c1+c n﹣k+1
于是(1≤k≤n﹣1,k∈N*).
故數(shù)列b1,b2…bn是公比為2的等比數(shù)列.
(2)由(1)知,=
故當(dāng)ak=2k﹣1時(shí),,
于是n.         
設(shè),則S=1×20+3×21+5×22+…+(2n﹣1)×2 n﹣1 
2S=12+3×22+…+(2n﹣3)×2 n﹣1+(2n﹣1)×2n  
①﹣②得,﹣S=1×20+2(2+22+…+2 n﹣1)﹣(2n﹣1)2n,
化簡(jiǎn)得,S=(2n﹣1)2n﹣2 n+1+3,
=n(2n﹣1)×2n﹣n×2 n+1+3n.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}是有窮等差數(shù)列,給出下面數(shù)表:上表共有n行,其中第1行的n個(gè)數(shù)為a1,a2,a3,…,an,從第二行起,每行中的每一個(gè)數(shù)都等于它肩上兩數(shù)之和.記表中各行的數(shù)的平均數(shù)(按自上而下的順序)分別為b1,b2,…,bn
(1)求證:數(shù)列b1,b2,…,bn成等比數(shù)列;
(2)若ak=2k-1(k=1,2,…,n),求和
nk=1
akbk
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}是有窮等差數(shù)列,給出下面數(shù)表:
a1  a2    a3     …an-1  an 第1行
a1+a2   a2+a3   …an-1+an  第2行


…第n行
上表共有n行,其中第1行的n個(gè)數(shù)為a1,a2,a3…an,從第二行起,每行中的每一個(gè)數(shù)都等于它肩上兩數(shù)之和.記表中各行的數(shù)的平均數(shù)(按自上而下的順序)分別為b1,b2,b3…bn
(1)求證:數(shù)列b1,b2,b3…bn成等比數(shù)列;
(2)若ak=2k-1(k=1,2,…,n),求和
nk=1
akbk

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年山東省聊城市某重點(diǎn)中學(xué)高二(上)第四次模塊檢測(cè)數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)數(shù)列{an}是有窮等差數(shù)列,給出下面數(shù)表:
a1  a2    a3     …an-1 an 第1行
a1+a2   a2+a3   …an-1+an  第2行


…第n行
上表共有n行,其中第1行的n個(gè)數(shù)為a1,a2,a3…an,從第二行起,每行中的每一個(gè)數(shù)都等于它肩上兩數(shù)之和.記表中各行的數(shù)的平均數(shù)(按自上而下的順序)分別為b1,b2,b3…bn
(1)求證:數(shù)列b1,b2,b3…bn成等比數(shù)列;
(2)若ak=2k-1(k=1,2,…,n),求和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年湖南省株洲市攸縣長(zhǎng)鴻學(xué)校高三(上)第二次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)數(shù)列{an}是有窮等差數(shù)列,給出下面數(shù)表:
a1  a2    a3     …an-1 an 第1行
a1+a2   a2+a3   …an-1+an  第2行


…第n行
上表共有n行,其中第1行的n個(gè)數(shù)為a1,a2,a3…an,從第二行起,每行中的每一個(gè)數(shù)都等于它肩上兩數(shù)之和.記表中各行的數(shù)的平均數(shù)(按自上而下的順序)分別為b1,b2,b3…bn
(1)求證:數(shù)列b1,b2,b3…bn成等比數(shù)列;
(2)若ak=2k-1(k=1,2,…,n),求和

查看答案和解析>>

同步練習(xí)冊(cè)答案