【題目】某地隨著經(jīng)濟(jì)的發(fā)展,居民收入逐年增長,下表是該地一建設(shè)銀行連續(xù)五年的儲蓄存款(年底余額),如下表1:
年份x | 2011 | 2012 | 2013 | 2014 | 2015 |
儲蓄存款y(千億元) | 5 | 6 | 7 | 8 | 10 |
為了研究計算的方便,工作人員將上表的數(shù)據(jù)進(jìn)行了處理, 得到下表2:
時間代號t | 1 | 2 | 3 | 4 | 5 |
z | 0 | 1 | 2 | 3 | 5 |
(Ⅰ)求z關(guān)于t的線性回歸方程;
(Ⅱ)用所求回歸方程預(yù)測到2020年年底,該地儲蓄存款額可達(dá)多少?
(附:對于線性回歸方程,其中)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知:以點 為圓心的圓與軸交于點、,與軸交于點、,其中為原點.
()求證: 的面積為定值.
()設(shè)直線與圓交于點、,若,求:圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,設(shè)函數(shù).
(1)當(dāng)時,求的極值點;
(2)討論在區(qū)間上的單調(diào)性;
(3)對任意恒成立時, 的最大值為1,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=﹣x3+ax2+bx+c圖象上的點P(1,m)處的切線方程為y=﹣3x+1
(1)若函數(shù)f(x)在x=﹣2時有極值,求f(x)的表達(dá)式.
(2)若函數(shù)f(x)在區(qū)間[﹣2,0]上單調(diào)遞增,求實數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 的
部分圖像如圖所示.
(Ⅰ)求函數(shù)的解析式及圖像的對稱軸方程;
(Ⅱ)把函數(shù)圖像上點的橫坐標(biāo)擴大到原來的倍(縱坐標(biāo)不變),再向左平移
個單位,得到函數(shù)的圖象,求關(guān)于的方程
在時所有的實數(shù)根之和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)f(x)=sin2x的圖象向右平移φ(0<φ< )個單位后得到函數(shù)g(x)的圖象.若對滿足|f(x1)﹣g(x2)|=2的x1、x2 , 有|x1﹣x2|min= ,則φ=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(Ⅰ)若,求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)若函數(shù),對于曲線上的兩個不同的點, ,記直線的斜率為,若,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓的半焦距為c,且過點,原點O到經(jīng)過兩點(c,0),(0,b)的直線的距離為.
(1)求橢圓E的方程;
(2)A為橢圓E上異于頂點的一點,點P滿足,過點P的直線交橢圓E于B,C兩點,且,若直線OA,OB的斜率之積為,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在周長為12的菱形ABCD中,AE=1,AF=2,若P為對角線BD上一動點,則EP+FP的最小值為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com