已知數(shù)列是首項(xiàng)為,公比的等比數(shù)列. 設(shè),數(shù)列滿足.
(Ⅰ)求證:數(shù)列成等差數(shù)列;    
(Ⅱ)求數(shù)列的前項(xiàng)和.

(1)根據(jù)數(shù)列,然后結(jié)合的關(guān)系式化簡(jiǎn)得到,加以證明。
(2)

解析試題分析:解:(Ⅰ)由已知可得,, 
為等差數(shù)列,其中.         6分                                                                               
(Ⅱ),        12分
考點(diǎn):等差數(shù)列的定義,數(shù)列求和
點(diǎn)評(píng):解決的關(guān)鍵是能結(jié)合數(shù)列的定義來(lái)證明等差數(shù)列或者等比數(shù)列,同時(shí)能結(jié)合裂項(xiàng)法思想求和,屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知是一個(gè)等差數(shù)列,且,
①求的通項(xiàng);                   ②求項(xiàng)和的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

各項(xiàng)均為正數(shù)的數(shù)列項(xiàng)和為,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)已知公比為的等比數(shù)列滿足,且存在滿足,,求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列滿足,
(I) 求數(shù)列的通項(xiàng)公式;
(II) 求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題12分)已知數(shù)列的首項(xiàng)為,其前項(xiàng)和為,且對(duì)任意正整數(shù)有:、、成等差數(shù)列.
(1)求證:數(shù)列成等比數(shù)列;
(2)求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

等差數(shù)列中,成等比數(shù)列,求數(shù)列前20項(xiàng)的和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知 是等差數(shù)列,是公比為的等比數(shù)列,,記為數(shù)列的前項(xiàng)和,
(1)若是大于的正整數(shù),求證:
(2)若是某一正整數(shù),求證:是整數(shù),且數(shù)列中每一項(xiàng)都是數(shù)列中的項(xiàng);
(3)是否存在這樣的正數(shù),使等比數(shù)列中有三項(xiàng)成等差數(shù)列?若存在,寫出一個(gè)的值,并加以說(shuō)明;若不存在,請(qǐng)說(shuō)明理由;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知是公差不為零的等差數(shù)列,,且成等比數(shù)列.
(1)求數(shù)列的通項(xiàng);      
(2)記,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)
等差數(shù)列{an}不是常數(shù)列,=10,且是等比數(shù)列{}的第1,3,5項(xiàng),且.
(1)求數(shù)列{}的第20項(xiàng),(2)求數(shù)列{}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案