【題目】如圖,是半圓的直徑,,為圓周上一點(diǎn),平面,,,,.
(1)求證:平面平面;
(2)在線段上是否存在點(diǎn),且使得平面?若存在,求出點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)見解析 (2)存在,為線段中點(diǎn).
【解析】
(1)通過(guò)證明證得平面,結(jié)合證得平面,由此證得平面平面.
(2)通過(guò)計(jì)算證明證得,設(shè)為線段中點(diǎn),為線段中點(diǎn),連接,結(jié)合(1)的結(jié)論,利用等腰三角形的性質(zhì)證得平面,證得四邊形是平行四邊形,由此由此還整得,進(jìn)而證得平面.
(1)∵平面,∴.
又為圓周上一點(diǎn)且是半圓的直徑,∴.
∴平面.
又,
∴平面,且平面,
∴平面平面;
(2)點(diǎn)為線段中點(diǎn),證明如下:
設(shè),則,,
∴.又,∴.
∴.
取中點(diǎn),連接.
∴.又由(1)可知平面平面,故平面.
又,,故,即四邊形為平行四邊形,
∴,∴平面.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】江蘇省園博會(huì)有一中心廣場(chǎng),南京園,常州園都在中心廣場(chǎng)的南偏西45°方向上,到中心廣場(chǎng)的距離分別為km,km;揚(yáng)州園在中心廣場(chǎng)的正東方向,到中心廣場(chǎng)的距離為km.規(guī)劃建設(shè)一條筆直的柏油路穿過(guò)中心廣場(chǎng),且將南京園,常州園,揚(yáng)州園到柏油路的最短路徑鋪設(shè)成鵝卵石路(如圖(1)、(2)).已知鋪設(shè)每段鵝卵石路的費(fèi)用(萬(wàn)元)與其長(zhǎng)度的平方成正比,比例系數(shù)為2.設(shè)柏油路與正東方向的夾角,即圖(2)中∠COF為((0,)),鋪設(shè)三段鵝卵石路的總費(fèi)用為y(萬(wàn)元).
(1)求南京園到柏油路的最短距離關(guān)于的表達(dá)式;
(2)求y的最小值及此時(shí)tan的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知圓及點(diǎn),.
(1)若直線平行于,與圓相交于,兩點(diǎn),,求直線的方程;
(2)在圓上是否存在點(diǎn),使得?若存在,求點(diǎn)的個(gè)數(shù);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,橢圓:的離心率是,過(guò)點(diǎn)的動(dòng)直線與橢圓相交于,兩點(diǎn),當(dāng)直線平行軸時(shí),直線被橢圓截得的線段長(zhǎng)為4.
(1)求橢圓的方程;
(2)設(shè)為坐標(biāo)原點(diǎn),是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知扇形的圓心角∠AOB=,半徑為,若點(diǎn)C是上的一動(dòng)點(diǎn)(不與點(diǎn)A,B重合).
(1)若弦,求的長(zhǎng);
(2)求四邊形OACB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】科研人員在對(duì)某物質(zhì)的繁殖情況進(jìn)行調(diào)查時(shí)發(fā)現(xiàn),1月、2月、3月該物質(zhì)的數(shù)量分別為3、5、9個(gè)單位.為了預(yù)測(cè)以后各月該物質(zhì)的數(shù)量,甲選擇了模型,乙選擇了模型,其中y為該物質(zhì)的數(shù)量,x為月份數(shù),a,b,c,p,q,r為常數(shù).
(1)若5月份檢測(cè)到該物質(zhì)有32個(gè)單位,你認(rèn)為哪個(gè)模型較好,請(qǐng)說(shuō)明理由.
(2)對(duì)于乙選擇的模型,試分別計(jì)算4月、7月和10月該物質(zhì)的當(dāng)月增長(zhǎng)量,從計(jì)算結(jié)果中你對(duì)增長(zhǎng)速度的體會(huì)是什么?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)(為常數(shù),是自然對(duì)數(shù)的底數(shù)),若曲線在點(diǎn)處切線的斜率為.
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)令,試討論函數(shù)的單調(diào)性.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com