已知橢圓C的兩焦點(diǎn)分別為F1(-2
2
,0)、F2(2
2
,0),長(zhǎng)軸長(zhǎng)為6,
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知過點(diǎn)(0,2)且斜率為1的直線交橢圓C于A、B兩點(diǎn),求線段AB的長(zhǎng)度.
(1)由F1(-2
2
,0)、F2(2
2
,0)
,長(zhǎng)軸長(zhǎng)為6
得:c=2
2
,a=3
所以b=1
∴橢圓方程為
x2
9
+
y2
1
=1
…(5分)
(2)設(shè)A
x1,y1
,B
x2,y2
,由(1)可知橢圓方程為
x2
9
+
y2
1
=1
①,
∵直線AB的方程為y=x+2②…(7分)
把②代入①得化簡(jiǎn)并整理得10x2+36x+27=0
x1+x2=-
18
5
,x1x2=
27
10
…(10分)
|AB|=
(1+12)(
182
52
-4×
27
10
)
=
6
3
5
…(12分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線l過拋物線C的焦點(diǎn),且與C的對(duì)稱軸垂直.l與C交于A,B兩點(diǎn),|AB|=12,P為C的準(zhǔn)線上一點(diǎn),則△ABP的面積為(  )
A.18B.24C.36D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為
2
3
3
,且過點(diǎn)P(
6
,1).
(Ⅰ)求雙曲線C的方程;
(Ⅱ)若直線l:y=kx+
2
與雙曲線C恒有兩個(gè)不同的交點(diǎn)A和B,且
OA
OB
>2(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過拋物線y2=4x的焦點(diǎn)所作直線中,被拋物線截得弦長(zhǎng)為8的直線有( 。
A.1條B.2條C.3條D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠CAB=90°,|AB|=2,|AC|=
3
2
,一曲線E過點(diǎn)C,且曲線E上任一點(diǎn)到A,B兩點(diǎn)的距離之和不變.
(1)建立適當(dāng)?shù)淖鴺?biāo)系,求曲線E的方程;
(2)設(shè)點(diǎn)Q是曲線E上的一動(dòng)點(diǎn),求線段QA中點(diǎn)的軌跡方程;
(3)設(shè)M,N是曲線E上不同的兩點(diǎn),直線CM和CN的傾斜角互補(bǔ),試判斷直線MN的斜率是否為定值.如果是,求這個(gè)定值;如果不是,請(qǐng)說明理由.
(4)若點(diǎn)D是曲線E上的任一定點(diǎn)(除曲線E與直線AB的交點(diǎn)),M,N是曲線E上不同的兩點(diǎn),直線DM和DN的傾斜角互補(bǔ),直線MN的斜率是否為定值呢?如果是,請(qǐng)你指出這個(gè)定值.(本小題不必寫出解答過程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,橢圓M:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
3
2
,直線x=±a和y=±b所圍成的矩形ABCD的面積為8.
(Ⅰ)求橢圓M的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線l:y=x+m(m∈R)與橢圓M有兩個(gè)不同的交點(diǎn)P,Q,l與矩形ABCD有兩個(gè)不同的交點(diǎn)S,T.求
|PQ|
|ST|
的最大值及取得最大值時(shí)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

過雙曲線
x2
3
-y2=1
的右焦點(diǎn)F2,作傾斜角為
π
4
的直線交雙曲線于A、B兩點(diǎn),
求:(1)|AB|的值;
(2)△F1AB的周長(zhǎng)(F1為雙曲線的左焦點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線與橢圓
x2
27
+
y2
36
=1
有相同焦點(diǎn),且經(jīng)過點(diǎn)(
15
,4)
,則雙曲線的方程為( 。
A.
x2
4
-
y2
5
=1
B.
y2
5
-
x2
4
=1
C.
y2
4
-
x2
5
=1
D.
x2
5
-
y2
4
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

AB是過拋物線x2=y的焦點(diǎn)一條弦,若AB的中點(diǎn)到x軸的距離為1,則弦AB的長(zhǎng)度為( 。
A.
5
2
B.
5
4
C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案