【題目】如圖某綜藝節(jié)目現(xiàn)場設(shè)有A,B,C,D四個(gè)觀眾席,現(xiàn)有由5不同顏色的馬甲可供現(xiàn)場觀眾選擇,同一觀眾席上的馬甲的顏色相同,相鄰觀眾席上的馬甲的顏色不相同,則不同的安排方法種數(shù)為

【答案】260
【解析】解:根據(jù)題意,分3步進(jìn)行分析: ①、對于A區(qū)域,可以在5種顏色中選1種,即有5種情況,
②、對于B區(qū)域,需要在剩下的4種顏色種任選1種,即有4種情況,
③、對于C、D區(qū)域,
若D區(qū)域與B區(qū)域同色,C區(qū)域可以在剩下的4種顏色種任選1種,即有4種情況,
若D區(qū)域與B區(qū)域不同色,則D區(qū)域需要在除A、B的顏色外的3種顏色種任選1種,即有3種情況,
C區(qū)域可以在除B、D的顏色外的3種顏色種任選1種,即有3種情況,
則C、D區(qū)域有4+3×3=13種情況;
則不同的安排方法種數(shù)5×4×13=260種;
所以答案是:260.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C的方程:x2+y2﹣2x﹣4y+m=0,其中m<5.
(1)若圓C與直線l:x+2y﹣4=0相交于M,N兩點(diǎn),且|MN|= ,求m的值;
(2)在(1)條件下,是否存在直線l:x﹣2y+c=0,使得圓上有四點(diǎn)到直線l的距離為 ,若存在,求出c的范圍,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), ,其中是然對數(shù)底數(shù).

(1)若函數(shù)有兩個(gè)不同的極值點(diǎn), ,求實(shí)數(shù)的取值范圍;

(2)當(dāng)時(shí),求使不等式在一切實(shí)數(shù)上恒成立的最大正整數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】.已知函數(shù)

(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(2)求函數(shù)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場預(yù)計(jì)全年分批購入每臺價(jià)值2000元的電視機(jī)共3600臺,每批購入的臺數(shù)相同,且每批均須付運(yùn)費(fèi)400元,儲存購入的電視機(jī)全年所付保管費(fèi)與每批購入電視機(jī)的總價(jià)值(不含運(yùn)費(fèi))成正比.若每批購入400臺,則全年需用去運(yùn)費(fèi)和保管費(fèi)43600元.現(xiàn)在全年只有24000元可用于支付運(yùn)費(fèi)和保管費(fèi),請問能否恰當(dāng)安排每批進(jìn)貨的數(shù)量,使這24000元的資金夠用?寫出你的結(jié)論,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=x+sin|x|,x∈[﹣π,π]的大致圖象是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在下列4個(gè)函數(shù):① ;②y=sinx;③y=﹣tanx;④y=﹣cos2x、其中在區(qū)間 上增函數(shù)且以π為周期的函數(shù)是(把所有符合條件的函數(shù)序列號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在五面體中, , ,

, ,平面平面.

(1) 證明: 直線平面;

(2) 已知為棱上的點(diǎn),試確定點(diǎn)位置,使二面角的大小為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1= ,an= (n≥2,n∈N*),設(shè)bn= ,
(1)求證:數(shù)列{bn}是等差數(shù)列;
(2)設(shè)Sn=|b1|+|b2|+…+|bn|(n∈N*),求Sn

查看答案和解析>>

同步練習(xí)冊答案