在正數(shù)項列{an}中,且a3=2,a11=8,則=        

 

【答案】

  

【解析】

試題分析:因為 a3=2,a11=8,所以由等比中項的概念得,從而=32,故=

考點:本題主要考查等比數(shù)列的概念、通項公式及其性質(zhì)。

點評:解題的關(guān)鍵在于對等比數(shù)列性質(zhì)的熟練掌握。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在各項均為正數(shù)的數(shù)列{an}中,前n項和Sn滿足2Sn+1=an(2an+1),n∈N*
(1)證明{an}是等差數(shù)列,并求這個數(shù)列的通項公式及前n項和的公式;
(2)在平面直角坐標(biāo)系xoy面上,設(shè)點Mn(xn,yn)滿足an=nxn,Sn=n2yn,且點Mn在直線l上,Mn中最高點為Mk,若稱直線l與x軸.直線x=a,x=b所圍成的圖形的面積為直線l在區(qū)間[a,b]上的面積,試求直線l在區(qū)間[x3,xk]上的面積;
(3)若存在圓心在直線l上的圓紙片能覆蓋住點列Mn中任何一個點,求該圓紙片最小面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•朝陽區(qū)一模)在各項均為正數(shù)的數(shù)列{an}中,前n項和Sn滿足2Sn+1=an(2an+1),n∈N*
(Ⅰ)證明{an}是等差數(shù)列,并求這個數(shù)列的通項公式及前n項和的公式;
(Ⅱ)在XOY平面上,設(shè)點列Mn(xn,yn)滿足an=nxn,Sn=n2yn,且點列Mn在直線C上,Mn中最高點為Mk,若稱直線C與x軸、直線x=a、x=b所圍成的圖形的面積為直線C在區(qū)間[a,b]上的面積,試求直線C在區(qū)間[x3,xk]上的面積;
(Ⅲ)是否存在圓心在直線C上的圓,使得點列Mn中任何一個點都在該圓內(nèi)部?若存在,求出符合題目條件的半徑最小的圓;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•朝陽區(qū)一模)在各項均為正數(shù)的數(shù)列{an}中,前n項和Sn滿足2Sn+1=an(2an+1),n∈N*
(Ⅰ)證明{an}是等差數(shù)列,并求這個數(shù)列的通項公式及前n項和的公式;
(Ⅱ)在XOY平面上,設(shè)點列Mn(xn,yn)滿足an=nxn,Sn=n2yn,且點列Mn在直線C上,Mn中最高點為Mk,若稱直線C與x軸、直線x=a,x=b所圍成的圖形的面積為直線C在區(qū)間[a,b]上的面積,試求直線C在區(qū)間[x3,xk]上的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東坡區(qū)一模)已知數(shù)列{an}中,a1=6,an+1=an+1,數(shù)列{bn},點(n,bn)在過點A(0,1)的直線l上,若l上有兩點B、C,向量
BC
=(1,2).
(1)求數(shù)列{an},{bn}的通項公式;
(2)設(shè)cn=2 bn,在ak與ak+1之間插入k個ck,依次構(gòu)成新數(shù)列,試求該數(shù)列的前2013項之和;
(3)對任意正整數(shù)n,不等式(1+
1
b1
)(1+
1
b2
)•…•(1+
1
bn
)-a
n-2+an
≥0恒成立,求正數(shù)a的范圍.

查看答案和解析>>

同步練習(xí)冊答案