6.已知函數(shù)f(x)=sinωx+cosωx(ω>0),x∈R,若函數(shù)f(x)在區(qū)間(-ω,ω)內(nèi)單調(diào)遞增,且函數(shù)y=f(x)的圖象關(guān)于直線x=ω對(duì)稱,則ω的值為$\frac{\sqrt{π}}{2}$.

分析 由兩角和的正弦函數(shù)公式化簡(jiǎn)解析式可得f(x)=$\sqrt{2}$sin(ωx+$\frac{π}{4}$),由2kπ-$\frac{π}{2}$≤ωx+$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,k∈Z可解得函數(shù)f(x)的單調(diào)遞增區(qū)間,結(jié)合已知可得:-ω≥$\frac{2kπ-\frac{3π}{4}}{ω}$①,ω≤$\frac{2kπ+\frac{π}{4}}{ω}$②,k∈Z,從而解得k=0,又由ωx+$\frac{π}{4}$=kπ+$\frac{π}{2}$,可解得函數(shù)f(x)的對(duì)稱軸為:x=$\frac{kπ+\frac{π}{4}}{ω}$,k∈Z,結(jié)合已知可得:ω2=$\frac{π}{4}$,從而可求ω的值.

解答 解:∵f(x)=sinωx+cosωx=$\sqrt{2}$sin(ωx+$\frac{π}{4}$),
∵函數(shù)f(x)在區(qū)間(-ω,ω)內(nèi)單調(diào)遞增,ω>0
∴2kπ-$\frac{π}{2}$≤ωx+$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,k∈Z可解得函數(shù)f(x)的單調(diào)遞增區(qū)間為:[$\frac{2kπ-\frac{3π}{4}}{ω}$,$\frac{2kπ+\frac{π}{4}}{ω}$],k∈Z,
∴可得:-ω≥$\frac{2kπ-\frac{3π}{4}}{ω}$①,ω≤$\frac{2kπ+\frac{π}{4}}{ω}$②,k∈Z,
∴解得:0<ω2≤$\frac{3π}{4}-2kπ$且0<ω2≤2k$π+\frac{π}{4}$,k∈Z,
解得:-$\frac{1}{8}$$<k<\frac{3}{8}$,k∈Z,
∴可解得:k=0,
又∵由ωx+$\frac{π}{4}$=kπ+$\frac{π}{2}$,可解得函數(shù)f(x)的對(duì)稱軸為:x=$\frac{kπ+\frac{π}{4}}{ω}$,k∈Z,
∴由函數(shù)y=f(x)的圖象關(guān)于直線x=ω對(duì)稱,可得:ω2=$\frac{π}{4}$,可解得:ω=$\frac{\sqrt{π}}{2}$.
故答案為:$\frac{\sqrt{π}}{2}$.

點(diǎn)評(píng) 本題主要考查了由y=Asin(ωx+φ)的部分圖象確定其解析式,考查了正弦函數(shù)的圖象和性質(zhì),正確確定k的值是解題的關(guān)鍵,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.隨機(jī)抽取一個(gè)年份,對(duì)西安市該年4月份的天氣情況進(jìn)行統(tǒng)計(jì),結(jié)果如下:
(Ⅰ)在4月份任取一天,估計(jì)西安市在該天不下雨的概率;
(Ⅱ)西安市某學(xué)校擬從4月份的一個(gè)晴天開始舉行連續(xù)2天的運(yùn)動(dòng)會(huì),估計(jì)運(yùn)動(dòng)會(huì)期間不下雨的概率.
日期123456789101112131415
天氣
日期161718192021222324252627282930
天氣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)過點(diǎn)$(0,\sqrt{2})$,且離心率e為$\frac{{\sqrt{2}}}{2}$.
(1)求橢圓E的方程;
(2)設(shè)直線x=my-1(m∈R)交橢圓E于A,B兩點(diǎn),判斷點(diǎn)G$(-\frac{9}{4},0)$與以線段AB為直徑的圓的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某廠用鮮牛奶在某臺(tái)設(shè)備上生產(chǎn)A,B兩種奶制品.生產(chǎn)1噸A產(chǎn)品需鮮牛奶2噸,使用設(shè)備1小時(shí),獲利1000元;生產(chǎn)1噸B產(chǎn)品需鮮牛奶1.5噸,使用設(shè)備1.5小時(shí),獲利1200元.要求每天B產(chǎn)品的產(chǎn)量不超過A產(chǎn)品產(chǎn)量的2倍,設(shè)備每天生產(chǎn)A,B兩種產(chǎn)品時(shí)間之和不超過12小時(shí).假定每天可獲取的鮮牛奶數(shù)量W(單位:噸)是一個(gè)隨機(jī)變量,其分布列為
W121518
P0.30.50.2
該廠每天根據(jù)獲取的鮮牛奶數(shù)量安排生產(chǎn),使其獲利最大,因此每天的最大獲利Z(單位:元)是一個(gè)隨機(jī)變量.
(1)求Z的分布列和均值;
(2)若每天可獲取的鮮牛奶數(shù)量相互獨(dú)立,求3天中至少有1天的最大獲利超過10000元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知定義在R上的函數(shù)f(x)=2|x-m|-1(m為實(shí)數(shù))為偶函數(shù),記a=f(log0.53),b=f(log25),c=f(2m),則a,b,c的大小關(guān)系為( 。
A.a<b<cB.c<a<bC.a<c<bD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的上頂點(diǎn)為B,左焦點(diǎn)為F,離心率為$\frac{\sqrt{5}}{5}$.
(Ⅰ)求直線BF的斜率.
(Ⅱ)設(shè)直線BF與橢圓交于點(diǎn)P(P異于點(diǎn)B),過點(diǎn)B且垂直于BP的直線與橢圓交于點(diǎn)Q(Q異于點(diǎn)B),直線PQ與y軸交于點(diǎn)M,|PM|=λ|MQ|.
(i)求λ的值.
(ii)若|PM|sin∠BQP=$\frac{7\sqrt{5}}{9}$,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)實(shí)數(shù)a,b,t滿足|a+1|=|sinb|=t.則(  )
A.若t確定,則b2唯一確定B.若t確定,則a2+2a唯一確定
C.若t確定,則sin$\frac{2}$唯一確定D.若t確定,則a2+a唯一確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若變量x,y滿足$\left\{\begin{array}{l}{|x|+|y|≤1}\\{xy≥0}\end{array}\right.$,則2x+y的取值范圍為[-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在極坐標(biāo)系中,與曲線ρ=cosθ+1關(guān)于直線θ=$\frac{π}{6}$(ρ∈R)對(duì)稱的曲線的極坐標(biāo)方程是( 。
A.ρ=sin($\frac{π}{3}$+θ)+1B.ρ=sin($\frac{π}{3}$-θ)+1C.ρ=sin($\frac{π}{6}$+θ)+1D.ρ=sin($\frac{π}{6}$-θ)+1

查看答案和解析>>

同步練習(xí)冊(cè)答案