分析 (Ⅰ)由已知可求sin∠ADB的值,根據(jù)正弦定理即可解得BD的值.
(Ⅱ)根據(jù)已知及余弦定理可求cos∠C=-$\frac{1}{2}$,結(jié)合范圍∠C∈(0,π)可求∠C,可得∠A+∠C=π,即可得證.
解答 解:(Ⅰ)在△ABD中,因為cos∠ADB=$\frac{1}{7}$,∠ADB∈(0,π),
所以sin∠ADB=$\frac{4\sqrt{3}}{7}$.--------------------------(3分)
根據(jù)正弦定理,有$\frac{BD}{sin∠A}=\frac{AB}{sin∠ADB}$,--------------------------(6分)
代入AB=8,∠A=$\frac{π}{3}$.
解得BD=7.--------------------------(7分)
(Ⅱ)在△BCD中,根據(jù)余弦定理cos∠C=$\frac{B{C}^{2}+C{D}^{2}-B{D}^{2}}{2BC•CD}$.----------------------(10分)
代入BC=3,CD=5,得cos∠C=-$\frac{1}{2}$,∠C∈(0,π)所以$∠C=\frac{2π}{3}$,---------(12分)
所以∠A+∠C=π,而在四邊形ABCD中∠A+∠ABC+∠C+∠ADC=2π,
所以∠ABC+∠ADC=π.-------(13分)
點評 本題主要考查了正弦定理,余弦定理的綜合應(yīng)用,考查了余弦函數(shù)的圖象和性質(zhì),同角的三角函數(shù)關(guān)系式的應(yīng)用,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[{0,\left.{\frac{π}{6}}]}\right.$ | B. | $[{0,\left.{\frac{π}{3}}]}\right.$ | C. | $[{0,\left.{\frac{π}{4}}]}\right.$ | D. | $[{\frac{π}{6},\left.{\frac{π}{4}}]}\right.$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com