10.如圖1,已知四邊形ABFD為直角梯形,AB∥DF,∠ADF=$\frac{π}{2}$,BC⊥DF,△AED為等邊三角形,AD=$\frac{{10\sqrt{3}}}{3}$,DC=$\frac{{2\sqrt{7}}}{3}$,如圖2,將△AED,△BCF分別沿AD,BC折起,使得平面AED⊥平面ABCD,平面BCF⊥平面ABCD,連接EF,DF,設(shè)G為AE上任意一點(diǎn).

(1)證明:DG∥平面BCF;
(2)若GC=$\frac{16}{3}$,求$\frac{EG}{GA}$的值.

分析 (1)根據(jù)題意證明CD⊥平面AED,CD⊥平面BCF,得出平面AED∥平面BCF,即可證明DG∥平面BCF;
(2)根據(jù)空間中的垂直關(guān)系,利用直角三角形的邊角關(guān)系,即可求出$\frac{EG}{GA}$的值.

解答 解:(1)由題意可知AD⊥DC,因?yàn)槠矫鍭ED⊥平面ABCD,
平面AED∩平面ABCD=AD,
所以CD⊥平面AED,
同理CD⊥平面BCF,所以平面AED∥平面BCF;
又DG?平面AED,所以DG∥平面BCF;
(2)取AD的中點(diǎn)O,連接OE,則OE⊥AD,
過G作GH⊥OA,垂足為G,設(shè)GH=h;
∵∠EAD=60°,∴$AH=\frac{{\sqrt{3}}}{3}h$;
∵GC2=GH2+HD2+DC2,
∴$\frac{256}{9}={h^2}+{(\frac{{10\sqrt{3}}}{3}-\frac{{\sqrt{3}}}{3}h)^2}+\frac{28}{9}$,
化簡(jiǎn)得h2-5h+6=0,
∴h=3或h=2;
又∵$OE=\frac{{10\sqrt{3}}}{3}×\frac{{\sqrt{3}}}{2}=5$,
當(dāng)h=3時(shí),
在Rt△AOE中,$\frac{AH}{OE}=\frac{AG}{AE}=\frac{3}{5}$,
∴$\frac{EG}{GA}=\frac{2}{3}$;
當(dāng)h=2時(shí),同理可得$\frac{EG}{GA}=\frac{3}{2}$,
綜上所述,$\frac{EG}{GA}$的值為$\frac{2}{3}$或$\frac{3}{2}$.

點(diǎn)評(píng) 本題考查了空間中的平行與垂直關(guān)系的應(yīng)用問題,也考查了邊角關(guān)系的應(yīng)用問題,是綜合性題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=ax3+bx2+cx,其導(dǎo)函數(shù)為f′(x)的部分值如表所示:
x-3-201348
f'(x)-24-10680-10-90
根據(jù)表中數(shù)據(jù),回答下列問題:
(Ⅰ)實(shí)數(shù)c的值為6;當(dāng)x=3時(shí),f(x)取得極大值(將答案填寫在橫線上).
(Ⅱ)求實(shí)數(shù)a,b的值.
(Ⅲ)若f(x)在(m,m+2)上單調(diào)遞減,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知點(diǎn)A(1,3),B(4,1),則向量$\overrightarrow{AB}$的模為$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)A={x|2x2+ax+2=0},2∈A,集合B={x|x2=1}.
(1)求a的值,并寫出集合A的所有子集;
(2)若集合C={x|bx=1},且C⊆B,求實(shí)數(shù)b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在△ABC中,a,b,c分別為角A,B,C所對(duì)的邊,若c=4,且C=60°,則ab的最大值為( 。
A.4B.1+$\sqrt{3}$C.16D.$\frac{1+\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若全集U={x∈N|1≤x≤7},集合A={1,2,3,5},B={2,3,4},則集合CUA∩CUB等于( 。
A.{ 2,3 }B.{ 1,5,6,7 }C.{ 6,7 }D.{ 1,5 }

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知平面向量$\vec a$,$\vec b$滿足$\vec a$•($\vec a$+$\vec b$)=5,且|${\vec a}$|=2,|${\vec b}$|=1,則$\vec a$與$\vec b$夾角的大小為60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù):f(x)=-x3-3x2+(1+a)x+b(a<0,b∈R).
(1)令h(x)=f(x-1)-b+a+3,判斷h(x)的奇偶性,并討論h(x)的單調(diào)性;
(2)若g(x)=|f(x)|,設(shè)M(a,b)為g(x)在[-2,0]的最大值,求M(a,b)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若A={x|x>-1},B={x|x-3<0},則A∩B={x|-1<x<3}.

查看答案和解析>>

同步練習(xí)冊(cè)答案