【題目】已知函數(shù).
(Ⅰ)求過點(diǎn)且與曲線相切的直線方程;
(Ⅱ)設(shè),其中為非零實(shí)數(shù),若有兩個極值點(diǎn),且,求證:.
【答案】(Ⅰ);(Ⅱ)見解析.
【解析】試題分析:
(Ⅰ)由導(dǎo)函數(shù)研究函數(shù)的切線,求得函數(shù)在點(diǎn) 處的切線斜率為 ,據(jù)此可得切線方程為;
(Ⅱ)利用題意構(gòu)造函數(shù) ,結(jié)合(I)的結(jié)論和導(dǎo)函數(shù)與原函數(shù)的關(guān)系即可證得結(jié)論.
試題解析:
(Ⅰ)
設(shè)切點(diǎn)為,則切線的斜率為
點(diǎn)在上,
,解得
切線的斜率為,切線方程為
(Ⅱ)
當(dāng)時,即時,在上單調(diào)遞增;
當(dāng)時,由得,,故在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增;
當(dāng)時,由得,在上單調(diào)遞減,在上單調(diào)遞增.
當(dāng)時,有兩個極值點(diǎn),即,
,由得,
由
,即證明
即證明
構(gòu)造函數(shù),
在上單調(diào)遞增,
又,所以在時恒成立,即成立
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)=x2﹣2x.
(1)求f(x)的解析式,并畫出的f(x)圖象;
(2)設(shè)g(x)=f(x)﹣k,利用圖象討論:當(dāng)實(shí)數(shù)k為何值時,函數(shù)g(x)有一個零點(diǎn)?二個零點(diǎn)?三個零點(diǎn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個函數(shù):①y=3﹣x;② ;③y=x2+2x﹣10;④ ,其中值域?yàn)镽的函數(shù)有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓為參數(shù)和直線 其中為參數(shù), 為直線的傾斜角.
(1)當(dāng)時,求圓上的點(diǎn)到直線的距離的最小值;
(2)當(dāng)直線與圓有公共點(diǎn)時,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸正半軸為極軸,并在兩種坐標(biāo)系中取相同的長度單位,已知直線的參數(shù)方程為,( 為參數(shù), ),曲線的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程;
(2)設(shè)直線與曲線相交于, 兩點(diǎn),當(dāng)變化時,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐V﹣ABCD中,底面ABCD是正方形,側(cè)棱VA⊥底面ABCD,點(diǎn)E為VA的中點(diǎn).
(Ⅰ)求證:VC∥平面BED;
(Ⅱ)求證:平面VAC⊥平面BED.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l過點(diǎn)P(0,2),斜率為k,圓Q:x2+y2﹣12x+32=0.
(1)若直線l和圓相切,求直線l的方程;
(2)若直線l和圓交于A、B兩個不同的點(diǎn),問是否存在常數(shù)k,使得+與共線?若存在,求出k的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某服裝銷售公司進(jìn)行關(guān)于消費(fèi)檔次的調(diào)查,根據(jù)每人月均服裝消費(fèi)額將消費(fèi)檔次分為0-500元;500-1000元;1000-1500元;1500-2000元四個檔次,針對兩類人群各抽取100人的樣本進(jìn)行統(tǒng)計分析,各檔次人數(shù)統(tǒng)計結(jié)果如下表所示:
0~ 500元 | 500~ 1000元 | 1000~ 1500元 | 1500~ 2000元 | |
A類 | 20 | 50 | 20 | 10 |
B類 | 50 | 30 | 10 | 10 |
月均服裝消費(fèi)額不超過1000元的人群視為中低消費(fèi)人群,超過1000元的視為中高收入人群.
(Ⅰ)從類樣本中任選一人,求此人屬于中低消費(fèi)人群的概率;
(Ⅱ)從兩類人群中各任選一人,分別記為甲、乙,估計甲的消費(fèi)檔次不低于乙的消費(fèi)檔次的概率;
(Ⅲ)以各消費(fèi)檔次的區(qū)間中點(diǎn)對應(yīng)的數(shù)值為該檔次的人均消費(fèi)額,估計兩類人群哪類月均服裝消費(fèi)額的方差較大(直接寫出結(jié)果,不必說明理由).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com