15.函數(shù)f(x)=x2-2mx+5在區(qū)間[-2,+∞)上是增函數(shù),則m的取值范圍是( 。
A.(-∞,-2]B.[-2,+∞)C.(-∞,-1]D.[-1,+∞)

分析 先求出對(duì)稱軸,再根據(jù)二次函數(shù)的圖象性質(zhì)和單調(diào)性得m≤-2即可.

解答 解:由y=f(x)的對(duì)稱軸是x=m,可知f(x)在[m,+∞)上遞增,
由題設(shè)只需m≤-2,所以m的取值范圍(-∞,-2].
故選:A.

點(diǎn)評(píng) 本題主要考查了二次函數(shù)的對(duì)稱軸,根據(jù)單調(diào)性判對(duì)稱軸滿足的條件,同時(shí)考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.求與橢圓4x2+9y2=36有相同的焦距,且離心率為$\frac{\sqrt{5}}{5}$的橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知α為銳角,cos(α$+\frac{4n+1}{4}$π)=$\frac{1}{2}$,(n∈Z),求cos(α-$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知拋物線y=ax2+bx+c通過(guò)點(diǎn)P(1,1),且在點(diǎn)Q(2,-1)處的切線平行于直線y=x,則拋物線方程為( 。
A.y=3x2-11x+9B.y=3x2+11x+9C.y=3x2-11x-9D.y=-3x2-11x+9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,AB是長(zhǎng)軸長(zhǎng)為6,焦距為2的橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右頂點(diǎn),直線l的方程為x=9,M是橢圓C上異于A,B的一點(diǎn),直線AM交l于點(diǎn)P.
(1)求橢圓方程;
(2)以MP為直徑的圓與直線MB交于點(diǎn)Q,試證明:直線PQ與x軸的交點(diǎn)R為定點(diǎn),并求該定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若函數(shù)y=2x+1+m的圖象不經(jīng)過(guò)第二象限,則m的取值范圍是(-∞,-2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知函數(shù)y=f(x)的圖象在點(diǎn)M(3,f(3))處的切線方程是y=$\frac{1}{3}$x+$\frac{2}{3}$,則f(3)+f′(3)的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知函數(shù)f(x)滿足xf(x)=mx+f(x)-1(m≠1),且f(x)的對(duì)稱中心為(1,2),則當(dāng)x>1時(shí),f(x)+x的最小值5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.三棱錐中,互相垂直的棱最多有6對(duì).

查看答案和解析>>

同步練習(xí)冊(cè)答案