數(shù)列{an}滿足an+1+(-1)nan=2n-1,則{an}的前60項(xiàng)和為
 
考點(diǎn):數(shù)列的求和,數(shù)列遞推式
專題:綜合題,等差數(shù)列與等比數(shù)列
分析:由題意可得 a2-a1=1,a3+a2=3,a4-a3=5,a5+a4=7,a6-a5=9,a7+a6=11,…a50-a49=97,變形可得 a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a7=2,a12+a10=40,a13+a15=2,a16+a14=56,…利用數(shù)列的結(jié)構(gòu)特征,求出{an}的前60項(xiàng)和
解答: 解:∵an+1+(-1)n an=2n-1,
∴有a2-a1=1,a3+a2=3,a4-a3=5,a5+a4=7,a6-a5=9,a7+a6=11,…a50-a49=97.
從而可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a11=2,a12+a10=40,a13+a11=2,a16+a14=56,…
從第一項(xiàng)開始,依次取2個相鄰奇數(shù)項(xiàng)的和都等于2,從第二項(xiàng)開始,依次取2個相鄰偶數(shù)項(xiàng)的和構(gòu)成以8為首項(xiàng),以16為公差的等差數(shù)列.
∴{an}的前60項(xiàng)和為 15×2+(15×8+
15×14
2
×16
)=1830,
故答案為:1830.
點(diǎn)評:本題主要考查數(shù)列求和的方法,等差數(shù)列的求和公式,注意利用數(shù)列的結(jié)構(gòu)特征,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=2,|
b
|=3,
a
b
的夾角為60°,
c
=5
a
+3
b
d
=3
a
+k
b
,
(1)求|
a
+
b
|的值;
(2)當(dāng)實(shí)數(shù)k為何值時,
c
d
;
(3)當(dāng)實(shí)數(shù)k為何值時,
c
d

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,某幾何體的直觀圖、側(cè)視圖與俯視圖如圖所示,正視圖為矩形,F(xiàn)為CE上的點(diǎn),且BF⊥平面ACE,AC交BD于點(diǎn)G.
(1)求證:AE∥平面BFD;
(2)求三棱錐C-BGF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|<
π
2
,x∈R)圖象的一部分如圖所示.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)當(dāng)x∈[-8,8]時,求函數(shù)y=f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正三棱錐P-ABC,底面邊長為6,側(cè)棱長為5,求它的表面積和體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=3
e1
-2
e2
,
b
=4
e1
+
e2
,其中
e1
=(1,0),
e2
=(0,1),求:
(1)求
a
b
的值;  
(2)求
a
b
夾角θ的余弦值.  
(3)求
a
b
方向上的投影.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解下列不等式:
(1)2x>8;
(2)(
1
2
x
2
;
(3)0.32-x>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了開闊學(xué)生的知識視野,某學(xué)校舉辦了一次數(shù)學(xué)知識競賽活動,共有800名學(xué)生參加,從中抽取了部分學(xué)生的成績(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì).請你根據(jù)頻率分布表,解答下列問題:
(Ⅰ)填充頻率分布表中的空格(在解答中直接寫出對應(yīng)空格序號的答案);
序號(i)分組(分?jǐn)?shù))組中值(Gi頻數(shù)(人數(shù))頻率(Fi
1[60,70)650.12
2[70,80)7520
3[80,90)85120.24
4[90,100)95
合計(jì)501
(Ⅱ)規(guī)定成績不低于90分的同學(xué)能獲獎,請估計(jì)在參加的800名學(xué)生中大概有多少同學(xué)獲獎?
(Ⅲ)在上述統(tǒng)計(jì)數(shù)據(jù)的分析中有一項(xiàng)計(jì)算見算法流程圖,求輸出S的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用定義證明:已知函數(shù)f(x)=x+
1
x

(1)證明函數(shù)f(x)=x+
1
x
在區(qū)間[1,+∞)上是增函數(shù),
(2)求函數(shù)f(x)=x+
1
x
在區(qū)間[2,6]上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案