3.已知函數(shù)f(x)=Asin(ωx+φ)+B,(其中A>0,ω>0,0<φ<$\frac{π}{2}$)的圖象上的一個最高點(diǎn)為M($\frac{π}{12}$,3),最低點(diǎn)為N($\frac{7π}{12}$,-1),且與x軸的一個交點(diǎn)為P($\frac{5π}{12}$,0).
(1)求f(x)的解析式;
(2)求f(x)的單調(diào)增區(qū)間;
(3)求f(x),x∈(0,$\frac{π}{6}$)的值域.

分析 (1)根據(jù)已知,求出A,B,ω,φ的值,可得f(x)的解析式;
(2)由2x+$\frac{π}{3}$∈[-$\frac{π}{2}$+2kπ,$\frac{π}{2}$+2kπ],k∈Z,可得f(x)的單調(diào)增區(qū)間;
(3)求出x∈(0,$\frac{π}{6}$)時(shí),相位角的范圍,結(jié)合正弦函數(shù)的圖象和性質(zhì),可得函數(shù)的值域.

解答 解:(1)∵函數(shù)f(x)=Asin(ωx+φ)+B,(其中A>0,ω>0,0<φ<$\frac{π}{2}$)的圖象上的一個最高點(diǎn)為M($\frac{π}{12}$,3),最低點(diǎn)為N($\frac{7π}{12}$,-1),且與x軸的一個交點(diǎn)為P($\frac{5π}{12}$,0).
∴2A=3-(-1)=4,故A=2;
2B=3+(-1)=2,故B=1;
$\frac{T}{2}$=$\frac{7π}{12}$-$\frac{π}{12}$=$\frac{π}{2}$,故T=π,ω=2,
故f(x)=2sin(2x+φ)+1,
又∵函數(shù)f(x)的圖象與x軸的一個交點(diǎn)為P($\frac{5π}{12}$,0).
故2sin($\frac{5π}{6}$+φ)=-1,即sin($\frac{5π}{6}$+φ)=-$\frac{1}{2}$,
又∵0<φ<$\frac{π}{2}$,
故$\frac{5π}{6}$+φ=$\frac{7π}{6}$,即φ=$\frac{π}{3}$,
故f(x)=2sin(2x+$\frac{π}{3}$)+1;
(2)由2x+$\frac{π}{3}$∈[-$\frac{π}{2}$+2kπ,$\frac{π}{2}$+2kπ],k∈Z得:
x∈[-$\frac{5π}{12}$+kπ,$\frac{π}{12}$+kπ],k∈Z,
故f(x)的單調(diào)增區(qū)間為[-$\frac{5π}{12}$+kπ,$\frac{π}{12}$+kπ],k∈Z,
(3)當(dāng)x∈(0,$\frac{π}{6}$)時(shí),2x+$\frac{π}{3}$∈($\frac{π}{3}$,$\frac{2π}{3}$),
由2x+$\frac{π}{3}$=$\frac{π}{3}$,或2x+$\frac{π}{3}$=$\frac{2π}{3}$時(shí),f(x)=$\sqrt{3}$+1,
當(dāng)2x+$\frac{π}{3}$=$\frac{π}{2}$時(shí),f(x)=3,
故x∈(0,$\frac{π}{6}$)函數(shù)的值域?yàn)椋?\sqrt{3}$+1,3]

點(diǎn)評 本題考查的知識點(diǎn)是正弦函數(shù)的圖象和性質(zhì),熟練掌握正弦函數(shù)的圖象和性質(zhì),是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x),當(dāng)x∈(0,1]時(shí)滿足如下性質(zhì):f(x)=2lnx且$f(x)=2f(\frac{1}{x})$,若在區(qū)間$[\frac{1}{3},3]$內(nèi),函數(shù)g(x)=f(x)-ax,有三個不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.$[\frac{ln3}{3},\frac{1}{e})$B.$[\frac{4ln3}{3},\frac{4}{e})$C.$(0,\frac{1}{e})$D.$(0,\frac{4}{e})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知數(shù)列{an}的前n項(xiàng)和為Sn,當(dāng)${S_n}={n^2}+2n$時(shí),a4+a5=( 。
A.11B.20C.33D.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.給出下列四個命題.
①命題p:對任意x∈R,sinx≤1的否定¬p:存在x∈R,sinx>1;
②“k=1”是“函數(shù)y=cos2kx-sin2kx的最小正周期為π”的充要條件;
③若$\overrightarrow{a}$與$\overrightarrow$+$\overrightarrow{c}$都是非零向量,則“$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$=$\overrightarrow{0}$”是“$\overrightarrow{a}$∥($\overrightarrow$+$\overrightarrow{c}$)”的必要不充分條件;
④命題“若一個整數(shù)能被6整除,則它能被3整除”的否命題是假命題.其中真命題的序號是①.(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知F1,F(xiàn)2分別是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn),過F2(2,0)與x軸垂直的直線交橢圓于點(diǎn)M,且|MF2|=3.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)P(0,1),問是否存在直線1與橢圓交于不同的兩點(diǎn)A,B,且AB的垂直平分線恰好過P點(diǎn)?若存在,求出直線l斜率的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.下面四個結(jié)論:
①y=sin|x|的圖象關(guān)于原點(diǎn)對稱;
②y=sin(|x|+2)的圖象是把y=sin|x|的圖象向左平移2個單位而得到的;
③y=sin(x+2)的圖象是把y=sinx的圖象向左平移2個單位而得到的;
④y=sin(x+2)的圖象是由y=sin(x+2)(x≥0)的圖象及y=-sin(x-2)(x<0)的圖象組成的.
其中,正確的結(jié)論有③(請把正確結(jié)論的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.用導(dǎo)數(shù)的定義求函數(shù)y=$\sqrt{x}$的導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)和圓O:x2+y2=b2.過雙曲線C上一點(diǎn)P引圓O的兩條切線,切點(diǎn)分別為A,B.若△PAB可為正三角形,則雙曲線C的離心率e的取值范圍是[$\frac{\sqrt{5}}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.拋物線y=x2-x-6與x軸的交點(diǎn)坐標(biāo)為(-2,0),(3,0).

查看答案和解析>>

同步練習(xí)冊答案