(2013•北京)如圖,AB為圓O的直徑,PA為圓O的切線,PB與圓O相交于D,若PA=3,PD:DB=9:16,則PD=
9
5
9
5
,AB=
4
4
分析:由PD:DB=9:16,可設(shè)PD=9x,DB=16x.利用切割線定理可得PA2=PD•PB,即可求出x,進(jìn)而得到PD,PB.AB為圓O的直徑,PA為圓O的切線,利用切線的性質(zhì)可得AB⊥PA.再利用勾股定理即可得出AB.
解答:解:由PD:DB=9:16,可設(shè)PD=9x,DB=16x.
∵PA為圓O的切線,∴PA2=PD•PB,
∴32=9x•(9x+16x),化為x2=
1
25
,∴x=
1
5

∴PD=9x=
9
5
,PB=25x=5.
∵AB為圓O的直徑,PA為圓O的切線,∴AB⊥PA.
AB=
PB2-PA2
=
52-32
=4.
故答案分別為
9
5
,4.
點(diǎn)評:熟練掌握圓的切線的性質(zhì)、切割線定理、勾股定理是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•北京)如圖,在棱長為2的正方體ABCD-A1B1C1D1中,E為BC的中點(diǎn),點(diǎn)P在線段D1E上,點(diǎn)P到直線CC1的距離的最小值為
2
5
5
2
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•北京)如圖,在四棱錐P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F分別是CD和PC的中點(diǎn),求證:
(Ⅰ)PA⊥底面ABCD;
(Ⅱ)BE∥平面PAD;
(Ⅲ)平面BEF⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•北京)如圖,在正方體ABCD-A1B1C1D1中,P為對角線BD1的三等分點(diǎn),P到各頂點(diǎn)的距離的不同取值有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•北京)如圖是某市3月1日至14日的空氣質(zhì)量指數(shù)趨勢圖,空氣質(zhì)量指數(shù)小于100表示空氣質(zhì)量優(yōu)良,空氣質(zhì)量指數(shù)大于200表示空氣重度污染.某人隨機(jī)選擇3月1日至3月15日中的某一天到達(dá)該市,并停留2天.

(Ⅰ)求此人到達(dá)當(dāng)日空氣重度污染的概率;
(Ⅱ)設(shè)x是此人停留期間空氣質(zhì)量優(yōu)良的天數(shù),求X的分布列與數(shù)學(xué)期望;
(Ⅲ)由圖判斷從哪天開始連續(xù)三天的空氣質(zhì)量指數(shù)方差最大?(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•北京)如圖,在三棱柱ABC-A1B1C1中,AA1C1C是邊長為4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求證:AA1⊥平面ABC;
(Ⅱ)求證二面角A1-BC1-B1的余弦值;
(Ⅲ)證明:在線段BC1上存在點(diǎn)D,使得AD⊥A1B,并求
BDBC1
的值.

查看答案和解析>>

同步練習(xí)冊答案