在△ABC中,A、B、C是三角形的三內(nèi)角,a、b、c是三內(nèi)角對應(yīng)的三邊,已知A、B、C成等差數(shù)列,a、b、c成等比數(shù)列.
(Ⅰ)求角B的大;
(Ⅱ)若b=3+
7
,求a+2c的值.
分析:(1)依題意A+C=2B,且A+B+C=π,可得B的值.
(2)由題意b2=ac,又由余弦定理可得b2=a2+c2-ac,故a2+c2-ac=ac,a=c.代入b2=ac得a=b=c,再根據(jù)b=3+
7
,求得a+2c的值.
解答:解:(1)依題意A+C=2B,且A+B+C=π,故B=
π
3
.…(6分)
(2)由題意b2=ac,又由余弦定理知b2=a2+c2-2accosB=a2+c2-2accos
π
3
,…(9分)
即b2=a2+c2-ac,故a2+c2-ac=ac,∴(a-c)2=0,∴a=c.
代入b2=ac得a=b=c.∴a+2c=3b=9+3
7
.…(12分)
點(diǎn)評:本題主要考查余弦定理的應(yīng)用,等差數(shù)列的定義,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,∠A、∠B、∠C所對的邊長分別是a、b、c.滿足2acosC+ccosA=b.則sinA+sinB的最大值是( 。
A、
2
2
B、1
C、
2
D、
1+
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a<b<c,B=60°,面積為10
3
cm2,周長為20cm,求此三角形的各邊長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別為角A,B,C的對邊,已知
.
m
=(cos
C
2
,sin
C
2
)
,
.
n
=(cos
C
2
,-sin
C
2
)
,且
m
n
=
1
2

(1)求角C;
(2)若a+b=
11
2
,△ABC的面積S=
3
3
2
,求邊c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,A,B,C為三個(gè)內(nèi)角,若cotA•cotB>1,則△ABC是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知y=f(x)函數(shù)的圖象是由y=sinx的圖象經(jīng)過如下三步變換得到的:
①將y=sinx的圖象整體向左平移
π
6
個(gè)單位;
②將①中的圖象的縱坐標(biāo)不變,橫坐標(biāo)縮短為原來的
1
2
;
③將②中的圖象的橫坐標(biāo)不變,縱坐標(biāo)伸長為原來的2倍.
(1)求f(x)的周期和對稱軸;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,且f(C)=2,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

同步練習(xí)冊答案