2.設(shè)集合M={x|x=90°k+45°,k∈Z},N={x|x=180°k±45°,k∈Z},則M、N的關(guān)系是( 。
A.M=NB.M≠NC.M?ND.N?M

分析 集合M中,k=2n,或k=2n+1,n∈Z,能過(guò)說(shuō)明M的元素都是集合N的元素,集合N的元素都是集合M的元素,從而便得出M=N.

解答 解:k=2n,M={x|x=90°k+45°,k∈Z}={x|x=180°n+45°,n∈Z},
k=2n-1,M={x|x=90°k+45°,k∈Z}={x|x=180°n-45°,n∈Z},
∴M=N.
故選:A.

點(diǎn)評(píng) 考查整數(shù)可以分成奇數(shù)和偶數(shù),描述法表示集合,知道x=k•90°+45°,k∈Z,和x=180°n+45°,n∈Z,表示的元素相同,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在平面直角坐標(biāo)系XOY中,圓C:(x-a)2+y2=a2,圓心為C,圓C與直線l1:y=-x的一個(gè)交點(diǎn)的橫坐標(biāo)為2.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)直線l2與l1垂直,且與圓C交于不同兩點(diǎn)A、B,若S△ABC=2,求直線l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=x(x+1)+1,
(1)求函數(shù)f(x)的解析式.
(2)寫出函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知直線m:x+y-2=0與圓C:(x-1)2+(y-2)2=1相交于A,B兩點(diǎn),則弦長(zhǎng)|AB|=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.從參加環(huán)保知識(shí)競(jìng)賽的學(xué)生中抽出60名,將其成績(jī)整理后畫(huà)出的頻率分布直方圖如圖.觀察圖形,回答下列問(wèn)題:
(1)49.5-69.5這一組的頻率和頻數(shù)分別為多少?
(2)估計(jì)這次環(huán)保知識(shí)競(jìng)賽成績(jī)的中位數(shù)及平均成績(jī).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.函數(shù)f(x)=$\frac{|1-x^2|}{1-|x|}$的圖象是( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.△ABC中,a、b、c分別為∠A、∠B、∠C的對(duì)邊.如果a、b、c成等比數(shù)列,∠B=30°,△ABC的面積為$\frac{3}{2}$,那么b=(  )
A.$\frac{1+\sqrt{3}}{2}$B.$\sqrt{6}$C.$\frac{2+\sqrt{3}}{2}$D.2+$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.函數(shù)$y={log_{\frac{1}{2}}}(-{x^2}+5x-6)$的單調(diào)增區(qū)間為$[\frac{5}{2},3)$,值域?yàn)閇2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.公差不為零的等差數(shù)列{an}中,a3=9且a3,a6,a10成等比數(shù)列,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求前27項(xiàng)的和S27

查看答案和解析>>

同步練習(xí)冊(cè)答案