【題目】橢圓的中心在原點,焦點在坐標軸上,焦距為2.一雙曲線和該橢圓有公共焦點,且雙曲線的實半軸長比橢圓的長半軸長小4,雙曲線離心率與橢圓離心率之比為73,求橢圓和雙曲線的方程.

【答案】見解析

【解析】

首先根據焦點分別在x軸、y軸上進行分類,不妨先設焦點在x軸上的橢圓、雙曲線的標準方程,然后根據題意與橢圓、雙曲線的性質列方程組,再解方程組得焦點在x軸上的橢圓、雙曲線的標準方程,最后把焦點在y軸上的橢圓、雙曲線的標準方程補充上即可.

解:焦點在x軸上,設橢圓方程為=1(a>b>0),且c.

設雙曲線為=1(m>0,n>0),則ma-4.

因為,所以,解得a=7,m=3.

因為橢圓和雙曲線的半焦距為

所以b2=36,n2=4.

所以橢圓方程為=1,雙曲線方程為=1.

焦點在y軸上,橢圓方程為=1,雙曲線方程為=1.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知過坐標原點的直線l與圓Cx2+y28x+120相交于不同的兩點A,B

1)求線段AB的中點P的軌跡M的方程.

2)是否存在實數(shù)k,使得直線l1ykx5)與曲線M有且僅有一個交點?若存在,求出k的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐P﹣ABC中,PAAB,PABC,ABBC,PA=AB=BC=2,D為線段AC的中點,E為線段PC上一點.

(1)求證:PABD;

(2)求證:平面BDE⊥平面PAC;

(3)當PA∥平面BDE時,求三棱錐E﹣BCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(1)若對定義域內的任意,都有成立,求實數(shù)的值;

(2)若函數(shù)的定義域上是單調函數(shù),求實數(shù)的取值范圍;

(3)若,證明對任意的正整數(shù), .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)當時,求的極值;

(2)當時,若函數(shù)恰有兩個不同的零點,求的值;

(3)當時,若的解集為 ,且 中有且僅有一個整數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓經過點,且離心率為

(Ⅰ)求橢圓的方程;

(Ⅱ)設是橢圓上的點,直線為坐標原點)的斜率之積為.若動點滿足,試探究是否存在兩個定點,使得為定值若存在,的坐標;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某次文藝匯演,要將A、B、C、D、E、F這六個不同節(jié)目編排成節(jié)目單,如下表:

如果A、B兩個節(jié)目要相鄰,且都不排在第3號位置,則節(jié)目單上不同的排序方式有(   )種

A. 192 B. 144 C. 96 D. 72

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知:在函數(shù)的圖象上,以為切點的切線的傾斜角為

,的值;

是否存在最小的正整數(shù),使得不等式對于恒成立?如果存在,請求出最小的正整數(shù);如果不存在,請說明理由;

求證:).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直棱柱ABC-中,D,E分別是AB,BB1的中點,=AC=CB=AB.

)證明://平面;

)求二面角D--E的正弦值.

查看答案和解析>>

同步練習冊答案