如圖,直線(xiàn)y=x-2與拋物線(xiàn)y2=2x相交于點(diǎn)A,B,求證:OA⊥OB.

答案:
解析:

  解法一:將y=x-2代入y2=2x,得

  (x-2)2=2x.

  化簡(jiǎn)得x2-6x+4=0,

  解得x=3±

  則y=3±-2=1±

  ∵kOA,kOB

  ∴kOA·kOB·=-1,

  ∴OA⊥OB.

  解法二:同解法一得方程x2-6x+4=0 、

  由一元二次方程根與系數(shù)的關(guān)系,可知

  x1+x2=6,x1·x2=4,

  ∵y1=x1-2,y2=x2-2,

  ∴y1y2=(x1-2)(x2-2)

 。絰1·x2-2(x1+x2)+4

 。4-12+4=-4.

  ∴kOA·kOB·=-1.

  ∴OA⊥OB.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:中學(xué)教材標(biāo)準(zhǔn)學(xué)案 數(shù)學(xué) 高二上冊(cè) 題型:044

如圖,直線(xiàn)y=x與拋物線(xiàn)y=x2-4交于A(yíng)、B兩點(diǎn),線(xiàn)段AB的垂直平分線(xiàn)與直線(xiàn)y=-5交于Q點(diǎn).

(1)求點(diǎn)Q的坐標(biāo);

(2)當(dāng)P為拋物線(xiàn)上位于線(xiàn)段AB下方(含A、B)的動(dòng)點(diǎn)時(shí),求△OPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:福建省永安一中2011-2012學(xué)年高二上學(xué)期期中考試數(shù)學(xué)理科試題 題型:044

定義:由橢圓的兩個(gè)焦點(diǎn)和短軸的一個(gè)頂點(diǎn)組成的三角形稱(chēng)為該橢圓的“特征三角形”.如果兩個(gè)橢圓的“特征三角形”是相似的,則稱(chēng)這兩個(gè)橢圓是“相似橢圓”,并將三角形的相似比稱(chēng)為橢圓的相似比.已知橢圓

(1)若橢圓,判斷C2與C1是否相似?如果相似,求出C2與C1的相似比;如果不相似,請(qǐng)說(shuō)明理由;

(2)寫(xiě)出與橢圓C1相似且短半軸長(zhǎng)為b的橢圓Cb的方程;若在橢圓Cb上存在兩點(diǎn)M、N關(guān)于直線(xiàn)y=x+1對(duì)稱(chēng),求實(shí)數(shù)b的取值范圍?

(3)如圖:直線(xiàn)l與兩個(gè)“相似橢圓”分別交于點(diǎn)A,B和點(diǎn)C,D,證明:|AC|=|BD|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海市南匯中學(xué)2012屆高三第一次考試數(shù)學(xué)試題 題型:044

定義:由橢圓的兩個(gè)焦點(diǎn)和短軸的一個(gè)頂點(diǎn)組成的三角形稱(chēng)為該橢圓的“特征三角形”.如果兩個(gè)橢圓的“特征三角形”是相似的,則稱(chēng)這兩個(gè)橢圓是“相似橢圓”,并將三角形的相似比稱(chēng)為橢圓的相似比.已知橢圓

(1)若橢圓判斷C2與C1是否相似?如果相似,求出C2與C1的相似比;如果不相似,請(qǐng)說(shuō)明理由;

(2)寫(xiě)出與橢圓C1相似且短軸半軸長(zhǎng)為b的焦點(diǎn)在x軸上的橢圓Cb的標(biāo)準(zhǔn)方程;若在橢圓Cb上存在兩點(diǎn)M、N關(guān)于直線(xiàn)y=x+1對(duì)稱(chēng),求實(shí)數(shù)b的取值范圍?

(3)如圖:直線(xiàn)y=x與兩個(gè)“相似橢圓”

分別交于點(diǎn)A,B和點(diǎn)C,D,試在橢圓M和橢圓Mλ上分別作出點(diǎn)E和點(diǎn)F(非橢圓頂點(diǎn)),使△CDF和△ABE組成以λ為相似的兩個(gè)相似三角形,寫(xiě)出具體作法.(不必證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年湖北武漢市高三2月調(diào)研測(cè)試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

如圖,矩形ABCD中,|AB|2,|BC|2E,F,G,H分別矩形四條邊的中點(diǎn),分別以HF,EG所在直線(xiàn)為x軸,y軸建立平面直角坐標(biāo)系,已知λ,λ,其中0λ1

1)求證:直線(xiàn)ERGR′的交點(diǎn)M在橢圓Γy21上;

2點(diǎn)N直線(xiàn)lyx2上且不在坐標(biāo)軸上的任意一點(diǎn),F1、F2分別為橢圓Γ的左、右焦點(diǎn),直線(xiàn)NF1NF2與橢圓Γ的交點(diǎn)分別為P、QS、T是否存在點(diǎn)N,使直線(xiàn)OP、OQOS、OT的斜率kOP、kOQ、kOS、kOT滿(mǎn)足kOPkOQkOSkOT0?若存在,求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由

 

查看答案和解析>>

同步練習(xí)冊(cè)答案