要使函數(shù)在上恒成立。求的取值范圍。
變題:設(shè),如果當時有意義,求a的取值范圍。
科目:高中數(shù)學 來源: 題型:
π |
4 |
π |
2 |
π |
2 |
x |
2 |
2k+1 |
3 |
π |
6 |
5 |
4 |
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆江蘇省高二下學期期中考試文科數(shù)學試卷(解析版) 題型:解答題
(1)已知,求函數(shù)的最大值和最小值;
(2)要使函數(shù)在上f (x)恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆浙江省高二下學期期中文科數(shù)學試卷(解析版) 題型:解答題
已知函數(shù) R).
(Ⅰ)若 ,求曲線 在點 處的的切線方程;
(Ⅱ)若 對任意 恒成立,求實數(shù)a的取值范圍.
【解析】本試題主要考查了導數(shù)在研究函數(shù)中的運用。
第一問中,利用當時,.
因為切點為(), 則,
所以在點()處的曲線的切線方程為:
第二問中,由題意得,即即可。
Ⅰ)當時,.
,
因為切點為(), 則,
所以在點()處的曲線的切線方程為:. ……5分
(Ⅱ)解法一:由題意得,即. ……9分
(注:凡代入特殊值縮小范圍的均給4分)
,
因為,所以恒成立,
故在上單調(diào)遞增, ……12分
要使恒成立,則,解得.……15分
解法二: ……7分
(1)當時,在上恒成立,
故在上單調(diào)遞增,
即. ……10分
(2)當時,令,對稱軸,
則在上單調(diào)遞增,又
① 當,即時,在上恒成立,
所以在單調(diào)遞增,
即,不合題意,舍去
②當時,, 不合題意,舍去 14分
綜上所述:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com