設(shè)A是三角形的一個(gè)內(nèi)角,且
cos2A
cot
A
2
-tan
A
2
=-
3
20
,求sinA-cosA的值.
分析:
cos2A
cot
A
2
-tan
A
2
中的切化弦,依題意可求得sin2A=-
3
5
,再判斷sinA-cosA的符號(hào),求得(SinA-cosA)2的值后開(kāi)方即可.
解答:解:∵
cos2A
cot
A
2
-tan
A
2
=
cos2A
1+cosA
sinA
-
1-cosA
sinA
=
1
2
sinAcosA
=
1
4
sin2A=-
3
20
,
∴sin2A=-
3
5
,
∵A為三角形內(nèi)角,
∴π<2A<2π,
π
2
<A<π,
∴sinA-cosA>0
而(sinA-cosA)2=1-sin2A=1-(-
3
5
)=
8
5

∴sinA-cosA
8
5
=
2
10
5
點(diǎn)評(píng):本題考查三角函數(shù)的恒等變換及化簡(jiǎn)求值,切化弦后,求得sin2A=-
3
5
是關(guān)鍵,考查推理分析與運(yùn)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

16、以下四個(gè)命題:
①如果兩個(gè)平面垂直,則其中一個(gè)平面內(nèi)的任意一條直線(xiàn)
都垂直于另一個(gè)平面內(nèi)無(wú)數(shù)條直線(xiàn);②設(shè)m、n為兩條不
同的直線(xiàn),α、β是兩個(gè)不同的平面,若α∥β,m⊥α,n∥β,則m⊥n,③“直線(xiàn)a⊥b”的充分而不必要條件是“a垂直于b在平面α內(nèi)的射影”;④若點(diǎn)P到一個(gè)三角形三條邊的距離相等,則點(diǎn)P在該三角形所在平面上的射影是該三角形的內(nèi)心.其中正確的命題序號(hào)為
①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

15、給出命題:
(1)在空間里,垂直于同一平面的兩個(gè)平面平行;
(2)設(shè)l,m是不同的直線(xiàn),α是一個(gè)平面,若l⊥α,l∥m,則m⊥α;
(3)已知α,β表示兩個(gè)不同平面,m為平面α內(nèi)的一條直線(xiàn),則“α⊥β”是“m⊥β”的充要條件;
(4)若點(diǎn)P到三角形三個(gè)頂點(diǎn)的距離相等,則點(diǎn)P在該三角形所在平面內(nèi)的射影是該三角形的外心;
(5)a,b是兩條異面直線(xiàn),P為空間一點(diǎn),過(guò)P總可以作一個(gè)平面與a,b之一垂直,與另一個(gè)平行.
其中正確的命題是
(2)(4)
(只填序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•紅橋區(qū)二模)已知橢圓:
x2
a2
+
y2
b2
=l(a>b>0)的一個(gè)頂點(diǎn)坐標(biāo)為B(0,1),若該橢圓的離心率等于
3
2

(1)求橢圓的方程.
(2)設(shè)Q是橢圓上任意一點(diǎn),F(xiàn)1F2分別是左、右焦點(diǎn),求∠F1QF2的取值范圍;
(3)以B為直角頂點(diǎn)作橢圓的內(nèi)接等腰直角三角形ABC,判斷這樣的三角形存在嗎?若存在,有幾個(gè)?若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•眉山一模)設(shè)函數(shù)f(x)對(duì)其定義域內(nèi)的任意實(shí)數(shù)x1x2都有f(
x1+x2
2
)≥
f(x1)+f(x2)
2
,則稱(chēng)函數(shù)f(x)為上凸函數(shù). 若函數(shù)f(x)為上凸函數(shù),則對(duì)定義域內(nèi)任意x1、x2、x3,…,xn都有f(
x1+x2+…+xn
n
)≥
f(x1)+f(x2)+…+f(xn)
n
(當(dāng)x1=x2=x3=…=xn時(shí)等號(hào)成立),稱(chēng)此不等式為琴生不等式,現(xiàn)有下列命題:
①f(x)=lnx(x>0)是上凸函數(shù);
②二次函數(shù)f(x)=ax2+bx+c(a≠0)是上凸函數(shù)的充要條件是a>0;
③f(x)是上凸函數(shù),若A(x1,f(x1)),B(x2,f(x2))是f(x)圖象上任意兩點(diǎn),點(diǎn)C在線(xiàn)段AB上,且
AC
CB
,則f(
x1x2
1+λ
)≥
f(x1)+λf(x2)
1+λ
;
④設(shè)A,B,C是一個(gè)三角形的三個(gè)內(nèi)角,則sinA+sinB+sinC的最大值是
3
3
2

其中,正確命題的序號(hào)是
①③④
①③④
(寫(xiě)出所有你認(rèn)為正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•四川)設(shè)P1,P2,…Pn為平面α內(nèi)的n個(gè)點(diǎn),在平面α內(nèi)的所有點(diǎn)中,若點(diǎn)P到點(diǎn)P1,P2,…Pn的距離之和最小,則稱(chēng)點(diǎn)P為P1,P2,…Pn的一個(gè)“中位點(diǎn)”,例如,線(xiàn)段AB上的任意點(diǎn)都是端點(diǎn)A,B的中位點(diǎn),現(xiàn)有下列命題:
①若三個(gè)點(diǎn)A、B、C共線(xiàn),C在線(xiàn)段AB上,則C是A,B,C的中位點(diǎn);
②直角三角形斜邊的中點(diǎn)是該直角三角形三個(gè)頂點(diǎn)的中位點(diǎn);
③若四個(gè)點(diǎn)A、B、C、D共線(xiàn),則它們的中位點(diǎn)存在且唯一;
④梯形對(duì)角線(xiàn)的交點(diǎn)是該梯形四個(gè)頂點(diǎn)的唯一中位點(diǎn).
其中的真命題是
①④
①④
(寫(xiě)出所有真命題的序號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案