設(shè)a>1,且,則的大小關(guān)系為( )

A.nmp          B.mpn          C.mnp          D.pmn

 

【答案】

B

【解析】

試題分析:∵a>1,∴,又函數(shù)為增函數(shù),故,即mpn,故選B

考點:本題考查了對數(shù)的性質(zhì)

點評:熟練運用對數(shù)函數(shù)的單調(diào)性比較大小是解決此類問題的關(guān)鍵,屬基礎(chǔ)題

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={(x,y)|y≥
12
|x-2|}
,B={(x,y)|y≤-|x|+b},A∩B≠∅.
(1)b的取值范圍是
 

(2)若(x,y)∈A∩B,且x+2y的最大值為9,則b的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•懷化三模)已知集合Sn={X|X=(x1,x2,…,xn),xi∈N*,i=1,2,…,n}(n≥2).對于A=(a1,a2,…an)∈Sn,B=(b1,b2,…,bn)∈Sn,A與B之間的距離為d(A,B)=
ni=1
|ai-bi|

(1)當(dāng)n=5時,設(shè)A=(1,2,1,2,a5),B=(2,4,2,1,3).若d(A,B)=7,則a5
=1或5
=1或5
;
(2)記I=(1,1,…,1)∈sn.若A、B∈Sn,且d(I,A)=d(I,B)=P,則d(A,B)的最大值為
2P
2P

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•西城區(qū)一模)已知集合Sn={X|X=(x1x2,…,xn),xiN*,i=1,2,…,n} (n≥2).對于A=(a1,a2,…,an),B=(b1,b2,…,bn)∈Sn,定義
AB
=(b1-a1,b2-a2,…,bn-an)
;λ(a1,a2,…,an)=(λa1,λa2,…,λan)(λ∈R);A與B之間的距離為d(A,B)=
n
i=1
|ai-bi|

(Ⅰ)當(dāng)n=5時,設(shè)A=(1,2,1,2,a5),B=(2,4,2,1,3).若d(A,B)=7,求a5;
(Ⅱ)(。┳C明:若A,B,C∈Sn,且?λ>0,使
AB
BC
,則d(A,B)+d(B,C)=d(A,C);
(ⅱ)設(shè)A,B,C∈Sn,且d(A,B)+d(B,C)=d(A,C).是否一定?λ>0,使
AB
BC
?說明理由;
(Ⅲ)記I=(1,1,…,1)∈Sn.若A,B∈Sn,且d(I,A)=d(I,B)=p,求d(A,B)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={(x,y)|x+y≥1},B={(x,y)|x≤2且y≤2},若(x,y)∈A∩B,且kx+y的最大值是6,則實數(shù)k的值為
2或-4
2或-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>0且a≠1,函數(shù)f(x)=a
x2-2x+3
有最大值,則不等式ax2-5x+6>1的解集為
 

查看答案和解析>>

同步練習(xí)冊答案