【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)(噸),一位居民的月用水量不超過的部分按平價(jià)收費(fèi),超出的部分按議價(jià)收費(fèi)。為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照,…,分成9組,制成了如圖所示的頻率分布直方圖。
(1)求直方圖中的值;
(2)設(shè)該市有60萬居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),并說明理由;
(3)若該市政府希望使82%的居民每月的用水量不超過標(biāo)準(zhǔn)(噸),估計(jì)的值,并說明理由。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的首項(xiàng)a1=2,且an=2an﹣1﹣1(n∈N* , N≥2)
(1)求證:數(shù)列{an﹣1}為等比數(shù)列;并求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{nan﹣n}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別是,向量,且.
(1)求角B的值;
(2)若,且,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2lnx﹣ax+a(a∈R).
(1)討論f(x)的單調(diào)性;
(2)若f(x)≤0恒成立,證明:當(dāng)0<x1<x2時(shí), .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)關(guān)于的一元二次方程.
(1)若是從0,1,2,3,4五個(gè)數(shù)中任取的一個(gè)數(shù),是從0,1,2三個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程有實(shí)根的概率;
(2)若是從區(qū)間上任取的一個(gè)數(shù),是從區(qū)間上任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)研究發(fā)現(xiàn),學(xué)生的注意力隨著老師講課時(shí)間的變化而變化,講課開始時(shí),學(xué)生的興趣激增;中間有一段時(shí)間,學(xué)生的興趣保持較理想的狀態(tài),隨后學(xué)生的注意力開始分散.設(shè)f(t)表示學(xué)生注意力隨時(shí)間t(分鐘)的變化規(guī)律(f(t)越大,表明學(xué)生注意力越集中),經(jīng)過實(shí)驗(yàn)分析得知:f(t)= ,
(1)求出k的值,并指出講課開始后多少分鐘,學(xué)生的注意力最集中?能堅(jiān)持多久?
(2)一道數(shù)學(xué)難題,需要講解24分鐘,并且要求學(xué)生的注意力至少達(dá)到185,那么經(jīng)過適當(dāng)安排,老師能否在學(xué)生達(dá)到所需的狀態(tài)下講授完這道題目?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“牟合方蓋”是我國(guó)古代數(shù)學(xué)家劉徽在研究球的體積的過程中構(gòu)造的一個(gè)和諧優(yōu)美的幾何體.它由完全相同的四個(gè)曲面構(gòu)成,相對(duì)的兩個(gè)曲面在同一個(gè)圓柱的側(cè)面上,好似兩個(gè)扣合(牟合)在一起的方形傘(方蓋).其直觀圖如圖,圖中四邊形是為體現(xiàn)其直觀性所作的輔助線.當(dāng)其主視圖和側(cè)視圖完全相同時(shí),它的俯視圖可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知圓的圓心是直線與軸的交點(diǎn),且與直線相切,求圓的標(biāo)準(zhǔn)方程;
(2)已知圓,直線過點(diǎn)與圓相交于兩點(diǎn),若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知圓的圓心在直線上,且過點(diǎn),與直線相切.
()求圓的方程.
()設(shè)直線與圓相交于,兩點(diǎn).求實(shí)數(shù)的取值范圍.
()在()的條件下,是否存在實(shí)數(shù),使得弦的垂直平分線過點(diǎn),若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com