分析 (1)直接代入a13+a23+…+an3=(a1+a2+…+an)2計(jì)算即可;
(2)通過a13+a23+…+an3=(a1+a2+…+an)2與a13+a23+…+an3+an+13=(a1+a2+…+an+an+1)2作差、整理可知an+12=2(a1+a2+…+an)+an+1,將上述等式與an2=2(a1+a2++an-1)+an(n≥2)作差、整理可知數(shù)列{an}是首項(xiàng)為1、公差為1的等差數(shù)列,計(jì)算即得結(jié)論.
解答 解:(1)依題意,a13=a12,
解得:a1=1或a1=0(舍);
又∵a13+a23=(a1+a2)2,即1+a23=(1+a2)2,
∴1+a23=1+2a2+a22,
解得:a2=2或a2=-1(舍);
∴a1、a2的值分別為1、2;
(2)∵a13+a23+…+an3=(a1+a2+…+an)2,①
∴a13+a23+…+an3+an+13=(a1+a2+…+an+an+1)2.②
②-①,得an+13=(a1+a2+…+an+an+1)2-(a1+a2+…+an)2,
整理得:an+13=[2(a1+a2+…+an)+an+1)]an+1,
又∵an>0,
∴an+12=2(a1+a2+…+an)+an+1.③
同樣有an2=2(a1+a2++an-1)+an(n≥2),④
③-④,得an+12-an2=an+1+an.
∴an+1-an=1.
由于a2-a1=1,即當(dāng)n≥1時(shí)都有an+1-an=1,
∴數(shù)列{an}是首項(xiàng)為1、公差為1的等差數(shù)列,
故數(shù)列{an}的通項(xiàng)公式an=n.
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng),考查運(yùn)算求解能力,注意解題方法的積累,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{13}$ | B. | 17 | C. | $\frac{53}{4}$ | D. | $\frac{\sqrt{53}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,0) | B. | (0,1) | C. | (1,1) | D. | (-1,-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 無最小值且無最大值 | B. | 無最小值但有最大值 | ||
C. | 有最小值且無最大值 | D. | 有最小值且有最大值 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com