分析 先設出A,B的坐標,根據拋物線方程可求得其準線方程,進而可表示出M到y(tǒng)軸距離,根據拋物線的定義結合兩邊之和大于第三邊且A,B,F(xiàn)三點共線時取等號判斷出$\frac{\left|MF\right|+\left|NF\right|}{2}$的最小值即可
解答 解:設M(x1,y1),N(x2,y2),
拋物y2=x的線準線x=-$\frac{1}{4}$,
P到y(tǒng)軸距離S=|$\frac{{x}_{1}+{x}_{2}}{2}$|=$\frac{{x}_{1}+\frac{1}{4}+{x}_{2}+\frac{1}{4}}{2}$-$\frac{1}{4}$=$\frac{\left|MF\right|+\left|NF\right|}{2}$-$\frac{1}{4}$,
∴$\frac{\left|MF\right|+\left|NF\right|}{2}$-$\frac{1}{4}$≥$\frac{\left|MN\right|}{2}$-$\frac{1}{4}$=2-$\frac{1}{4}$=$\frac{7}{4}$,
當且僅當M,N過F點時取等號,
故答案為:$\frac{7}{4}$.
點評 本小題主要考查拋物線的簡單性質、利用不等式求最值等基礎知識,考查運算求解能力,考查數形結合思想、化歸與轉化思想.屬于中檔題
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {1,-1} | B. | {x,y|x=1,y=-1} | C. | {x=1,y=-1} | D. | {(1,-1)} |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 0 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com