【題目】已知橢圓的兩焦點(diǎn)分別為
,
,
是橢圓在第一象限內(nèi)的一點(diǎn),并滿足
,過
作傾斜角互補(bǔ)的兩直線
、
分別交橢圓于
、
兩點(diǎn).
(1)求點(diǎn)坐標(biāo);
(2)當(dāng)直線經(jīng)過點(diǎn)
時(shí),求直線
的方程;
(3)求證直線的斜率為定值.
【答案】(1)(2)
(3)證明見解析
【解析】
(1)設(shè),由題意可知
與
,聯(lián)立求解即可.
(2)由題意可知,的斜率為-1,
的斜率為1,確定直線方程
與直線
的方程,然后分別與橢圓
聯(lián)立,求解
,
兩點(diǎn)坐標(biāo),即可.
(3)由題意可知,直線、
的斜率必存在,設(shè)
的方程為:
,與橢圓
聯(lián)立,求解點(diǎn)
坐標(biāo),同理求解點(diǎn)
坐標(biāo),求直線
的斜率,即可.
(1)由題可得,
,
設(shè)
則,
.
∴即
∵點(diǎn)在曲線上,則
.
解得點(diǎn)
的坐標(biāo)為
.
(2)當(dāng)直線經(jīng)過點(diǎn)
時(shí),則
的斜率為-1,
因兩條直線、
的傾斜角互補(bǔ),故
的斜率為1,
由得,
,
即,故
,
同理得,
∴直線的方程為
(3)依題意,直線、
的斜率必存在,不妨設(shè)
的方程為:
.
由得
,
設(shè),則
,
,
同理,則
,
同理.
所以,的斜率
為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是邊長(zhǎng)為1的正方形,PB⊥BC,PD⊥DC,且PC.
(1)求證:PA⊥平面ABCD;
(2)求異面直線AC與PD所成角的余弦值;
(3)求二面角B﹣PD﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求的極值;
(2)證明:時(shí),
(3)若函數(shù)有且只有三個(gè)不同的零點(diǎn),分別記為
,設(shè)
且
的最大值是
,證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果函數(shù)在
上存在
滿足
,
,則稱函數(shù)
是在
上的“雙中值函數(shù)”,已知函數(shù)
是
上的“雙中值函數(shù)”,則函數(shù)
的取值范圍是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的中心為坐標(biāo)原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過點(diǎn)M(4,1),N(2,2).
(1)求橢圓C的方程;
(2)若斜率為1的直線與橢圓C交于不同的兩點(diǎn),且點(diǎn)M到直線l的距離為,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
.
(Ⅰ)求證:曲線與
在
處的切線重合;
(Ⅱ)若對(duì)任意
恒成立.
(1)求實(shí)數(shù)的取值范圍;
(2)求證:(其中
).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A,B,C是三個(gè)事件,給出下列四個(gè)事件:
(Ⅰ)A,B,C中至少有一個(gè)發(fā)生;
(Ⅱ)A,B,C中最多有一個(gè)發(fā)生;
(Ⅲ)A,B,C中至少有兩個(gè)發(fā)生;
(Ⅳ)A,B,C最多有兩個(gè)發(fā)生;
其中相互為對(duì)立事件的是( )
A.Ⅰ和ⅡB.Ⅱ和ⅢC.Ⅲ和ⅣD.Ⅳ和Ⅰ
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《中華人民共和國道路交通安全法》第47條的相關(guān)規(guī)定:機(jī)動(dòng)車行經(jīng)人行道時(shí),應(yīng)當(dāng)減速慢行;遇行人正在通過人行道,應(yīng)當(dāng)停車讓行,俗稱“禮讓斑馬線”, 《中華人民共和國道路交通安全法》第90條規(guī)定:對(duì)不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設(shè)備所抓拍的5個(gè)月內(nèi)駕駛員“禮讓斑馬線”行為統(tǒng)計(jì)數(shù)據(jù):
月份 | 1 | 2 | 3 | 4 | 5 |
違章駕駛員人數(shù) | 120 | 105 | 100 | 90 | 85 |
(1)請(qǐng)利用所給數(shù)據(jù)求違章人數(shù)與月份
之間的回歸直線方程
;
(2)預(yù)測(cè)該路口9月份的不“禮讓斑馬線”違章駕駛員人數(shù).
參考公式: ,
.
參考數(shù)據(jù): .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是兩條異面直線,直線
與
都垂直,則下列說法正確的是( )
A. 若平面
,則
B. 若平面
,則
,
C. 存在平面,使得
,
,
D. 存在平面,使得
,
,
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com