已知數(shù)列{an}是等差數(shù)列,a1+a3+a5=105,a2+a4+a6=99,{an}的前n項和為Sn,則使得Sn達到最大的n是(   )
A.18B.19 C.20D.21

試題分析:設{an}的公差為d,由題意得
a1+a3+a5=a1+a1+2d+a1+4d=105,即a1+2d=35,①
a2+a4+a6=a1+d+a1+3d+a1+5d=99,即a1+3d=33,②
由①②聯(lián)立得a1=39,d=-2,
∴sn=39n+×(-2)=-n2+40n=-(n-20)2+400,
故當n=20時,Sn達到最大值400.故選C.
點評:求等差數(shù)列前n項和的最值問題可以轉(zhuǎn)化為利用二次函數(shù)的性質(zhì)求最值問題,但注意n取正整數(shù)這一條件.也可通過確定通項公式,進一步確定正負項分界。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分10分)
記等差數(shù)列{}的前n項和為,已知,
(Ⅰ)求數(shù)列{}的通項公式;
(Ⅱ)令,求數(shù)列{}的前項和

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知是等差數(shù)列的前n項和,且,有下列四個命
題,假命題的是(     )
A.公差B.在所有中,最大;
C.滿足的個數(shù)有11個;D.;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設數(shù)列的前n項和為,令,稱為數(shù)列,……,的“理想數(shù)”,已知數(shù)列,,……,的“理想數(shù)”為2004,那么數(shù)列2, ,……,的“理想數(shù)”為(     )
A.2002B.2004 C.2006D.2008

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

等差數(shù)列的前項和為,已知,則( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分) 已知數(shù)列為等差數(shù)列,且,
(1) 求數(shù)列的通項公式; (2) 令,求證:數(shù)列是等比數(shù)列.
(3)令,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知數(shù)列滿足則數(shù)列的前項和=      .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

等比數(shù)列的前三項為,,則             

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知等差數(shù)列{}的前2006項的和,其中所有的偶數(shù)項的和是2,則的值為(     )
A.1 B.2C.3D.4

查看答案和解析>>

同步練習冊答案