【題目】已知橢圓的左、右焦點分別為、是橢圓上一動點(與左、右頂點不重合).已知的面積的最大值為,橢圓的離心率為.

1)求橢圓的方程;

2)過的直線交橢圓、兩點,過軸的垂線交橢圓與另一點不與、重合).設(shè)的外心為,求證為定值.

【答案】1;(2)證明見解析.

【解析】

1)由已知條件得出關(guān)于、的方程組,求出、的值,進(jìn)而可得出橢圓的方程;

2)由題意可知直線的斜率存在,可設(shè)直線的方程為,將直線的方程與橢圓的方程聯(lián)立,列出韋達(dá)定理,利用弦長公式求出,利用線段的垂直平分線的交點得出點的坐標(biāo),進(jìn)而得出,再對進(jìn)行化簡即可.

1的面積的最大值為,

由已知條件得,解得,因此,橢圓的方程為

2)由題意可知,直線的斜率存在,且不為零,易知點,

設(shè)直線的方程為,設(shè)點,可知點,

聯(lián)立,消去,

由韋達(dá)定理得,,

由弦長公式得 ,

,

所以,線段的中點為

則線段的垂直平分線的方程為,即,

線段的垂直平分線為軸,在直線方程中,令,得.

則點,

因此,(定值).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某單位的職工食堂中,食堂每天以3/個的價格從面包店購進(jìn)面包,然后以5/個的價格出售.如果當(dāng)天賣不完,剩下的面包以1/個的價格全部賣給飼料加工廠.根據(jù)以往統(tǒng)計資料,得到食堂每天面包需求量的頻率分布直方圖如下圖所示.食堂某天購進(jìn)了80個面包,以x(單位:個,)表示面包的需求量,T(單位:元)表示利潤.

1)求食堂面包需求量的平均數(shù);

2)求T關(guān)于x的函數(shù)解析式;

3)根據(jù)直方圖估計利潤T不少于100元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】綠水青山就是金山銀山的生態(tài)文明發(fā)展理念已經(jīng)深入人心,這將推動新能源汽車產(chǎn)業(yè)的迅速發(fā)展.下表是2019年我國某地區(qū)新能源乘用車的前5個月銷售量與月份的統(tǒng)計表:

月份代碼

1

2

3

4

5

銷售量(萬輛)

0.5

0.6

1

1.4

1.5

1)利用線性相關(guān)系數(shù)判斷的線性相關(guān)性,并求出線性回歸方程

2)根據(jù)線性回歸方程預(yù)報20196月份的銷售量約為多少萬輛?

參考公式:,;回歸直線:

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓

(1)若橢圓的離心率為,求的值;

(2)若過點任作一條直線與橢圓交于不同的兩點,在軸上是否存在點,使得, 若存在,求出點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解高一年級學(xué)生的智力水平,某校按1:10的比例對700名高一學(xué)生按性別分別進(jìn)行“智力評分”抽樣調(diào)查,測得“智力評分”的頻數(shù)分布表如表1、表2所示.

表1:男生“智力評分”頻數(shù)分布表

智力評分/分

頻數(shù)

2

5

14

13

4

2

表2:女生“智力評分”頻數(shù)分布表

智力評分/分

頻數(shù)

1

7

12

6

3

1

(1)求高一年級的男生人數(shù),并完成下面男生“智力評分”的頻率分布直方圖;

(2)估計該校高一年級學(xué)生“智力評分”在內(nèi)的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(請寫出式子在寫計算結(jié)果)有4個不同的小球,4個不同的盒子,現(xiàn)在要把球全部放入盒內(nèi):

1)共有多少種方法?

2)若每個盒子不空,共有多少種不同的方法?

3)恰有一個盒子不放球,共有多少種放法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個口袋內(nèi)有3個不同的紅球,4個不同的白球

1)從中任取3個球,紅球的個數(shù)不比白球少的取法有多少種?

2)若取一個紅球記2分,取一個白球記1分,從中任取4個球,使總分不少于6分的取法有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市有4個郊縣(、、),如圖.現(xiàn)有5種顏色,問有多少種不同的著色方法,使得相鄰兩塊不同色,且每塊只涂一種顏色?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓盤上有一指針,開始時指向圓盤的正上方.指針每次順時針方向繞圓盤中心轉(zhuǎn)動一角,且,經(jīng)2004次旋轉(zhuǎn),第一次回到了其初始位置,即又指向了圓盤的正上方.試問:有多少個可能的不同值?

查看答案和解析>>

同步練習(xí)冊答案