已知等差數(shù)列{an}滿足:an+1>an(n∈N*),a1=1,該數(shù)列的前三項分別加上1,1,3后順次成為等比數(shù)列{bn}的前三項.
(Ⅰ)分別求數(shù)列{an},{bn}的通項公式an,bn;
(Ⅱ)設(shè)數(shù)學(xué)公式,若數(shù)學(xué)公式恒成立,求c的最小值.

解:(Ⅰ)設(shè)d、q分別為數(shù)列{an}、數(shù)列{bn}的公差與公比,a1=1.
由題可知,a1=1,a2=1+d,a3=1+2d,分別加上1,1,3后得2,2,+d,4+2d是等比數(shù)列{bn}的前三項,
∴(2+d)2=2(4+2d)?d=±2.
∵an+1>an,
∴d>0.
∴d=2,
∴an=2n-1(n∈N*).
由此可得b1=2,b2=4,q=2,
∴bn=2n(n∈N*).
(Ⅱ),①
.②
①-②,得


在N*是單調(diào)遞增的,


∴滿足條件恒成立的最小整數(shù)值為c=3.
分析:(Ⅰ)設(shè)d、q分別為數(shù)列{an}、數(shù)列{bn}的公差與公比,a1=1.由題可知,a1=1,a2=1+d,a3=1+2d,分別加上1,1,3后得2,2,+d,4+2d是等比數(shù)列{bn}的前三項,從而可得(2+d)2=2(4+2d),根據(jù)an+1>an,可確定公差的值,從而可求數(shù)列{an}的通項,進而可得公比q,故可求{bn}的通項公式
(Ⅱ)表示出,利用錯位相減法求和,進而問題可轉(zhuǎn)化為恒成立,利用在N*是單調(diào)遞增的,即可求得c的最小值.
點評:本題以等差數(shù)列與等比數(shù)列為載體,考查數(shù)列通項公式的求解,考查數(shù)列與不等式的綜合,考查錯位相減法求數(shù)列的和,綜合性強
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an},公差d不為零,a1=1,且a2,a5,a14成等比數(shù)列;
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{bn}滿足bn=an3n-1,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中:a3+a5+a7=9,則a5=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足:a5=11,a2+a6=18.
(1)求{an}的通項公式;
(2)若bn=an+q an(q>0),求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足a2=0,a6+a8=-10
(1)求數(shù)列{an}的通項公式;     
(2)求數(shù)列{|an|}的前n項和;
(3)求數(shù)列{
an2n-1
}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知等差數(shù)列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若{an}為遞增數(shù)列,請根據(jù)如圖的程序框圖,求輸出框中S的值(要求寫出解答過程).

查看答案和解析>>

同步練習(xí)冊答案