設函數(shù)y=f(x)的反函數(shù)為y=f-1(x),且y=f(2x-1)的圖象過點數(shù)學公式,則y=f-1(x)的圖象過點________.

(1,0)
分析:欲求y=f-1(x)的圖象過什么定點,可先求y=f(x)的圖象過什么定點,由已知得y=f(x)的圖象過定點(0,1),從而解決問題.
解答:∵y=f(2x-1)的圖象過點
∴y=f(x)的圖象過點(0,1),
根據(jù)互為反函數(shù)的兩個函數(shù)的圖象關于直線y=x對稱,
得y=f-1(x)的圖象過點(1,0).
故填:(1,0).
點評:本題考查互為反函數(shù)的圖象的對稱關系,屬于基礎題目,要會求一些簡單函數(shù)的反函數(shù),掌握互為反函數(shù)的函數(shù)圖象間的關系.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)y=f(x)的定義域為R,并且滿足f(x+y)=f(x)+f(y),f(
13
)=1
,且當x>0時,f(x)>0.
(1)求f(0)的值;
(2)判斷函數(shù)的奇偶性;
(3)如果f(x)+f(2+x)<2,求x取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)y=f(x)的定義域為全體R,當x<0時,f(x)>1,且對任意的實數(shù)x,y∈R,有f(x+y)=f(x)f(y)成立,數(shù)列{an}滿足a1=f(0),且f(an+1)=
1
f(
-an
2an+1
)
(n∈N*
(Ⅰ)求證:y=f(x)是R上的減函數(shù);          
(Ⅱ)求數(shù)列{an}的通項公式;
(Ⅲ)若不等式
k
(1+a1)(1+a2)…(1+an)
-
1
2n+1
≤0
對一切n∈N*均成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)y=f(x)的定義域為R+,若對于給定的正數(shù)k,定義函數(shù):fk(x)=
k,f(x)≤k
f(x),f(x)>k
,則當函數(shù)f(x)=
1
x
,k=1
時,函數(shù)fk(x)的圖象與直線x=
1
4
,x=2,y=0圍成的圖形的面積為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•閔行區(qū)一模)(文)設函數(shù)y=f(x)的反函數(shù)是y=f-1(x),且函數(shù)y=f(x)過點P(2,-1),則f-1(-1)=
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•南匯區(qū)二模)設函數(shù)y=f(x)的定義域為R,對任意實數(shù)x,y都有f(x+y)=f(x)+f(y),當x>0時f(x)<0且f(3)=-4.
(1)求證:y=f(x)為奇函數(shù);
(2)在區(qū)間[-9,9]上,求y=f(x)的最值.

查看答案和解析>>

同步練習冊答案