設(shè)函數(shù).
(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設(shè)函數(shù)對任意都有成立,求的取值范圍.
(I)當(dāng)p =1時,,其定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052602501833967916/SYS201205260252233240186785_DA.files/image002.png">.
所以.…………2分 由得,
所以的單調(diào)增區(qū)間為;單調(diào)減區(qū)間為.…………5分
(II)由函數(shù),得.
由(I)知,當(dāng)p =1時,,即不等式成立. ……7分
① 當(dāng)時,,
即g(x)在上單調(diào)遞減,從而滿足題意; …………9分
② 當(dāng)時,存在使得,
從而,即g(x)在上單調(diào)遞增,
從而存在使得不滿足題意;
③當(dāng)時,由知恒成立,此時不滿足題意.
綜上所述,實(shí)數(shù)p的取值范圍為.
【解析】略
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(08年天津南開區(qū)質(zhì)檢理) (12分)
設(shè)函數(shù)。
(1)當(dāng)時,求函數(shù)的極大值和極小值;
(2)若函數(shù)在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(07年寧夏、 海南卷理)(12分)
設(shè)函數(shù)
(I)若當(dāng)時,取得極值,求的值,并討論的單調(diào)性;
(II)若存在極值,求的取值范圍,并證明所有極值之和大于.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2012年高考(安徽理))設(shè)函數(shù)
(I)求函數(shù)的最小正周期;
(II)設(shè)函數(shù)對任意,有,且當(dāng)時, ,求函數(shù)在上的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年甘肅省高三(奧班)10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
選修4-5:不等式選講(本小題滿分10分)
設(shè)函數(shù),其中。
(Ⅰ)當(dāng)時,求不等式的解集;
(Ⅱ)若不等式的解集為,求a的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年新人教版高三一輪復(fù)習(xí)單元測試(8)數(shù)學(xué)試卷 題型:解答題
(12分)(理)設(shè)函數(shù),其中。
(Ⅰ)當(dāng)時,求不等式的解集;
(Ⅱ)若不等式的解集為 ,求a的值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com