已知常數(shù)p>0且p≠1,數(shù)列{an}前n項和數(shù)學公式數(shù)列{bn}滿足bn+1-bn=logpa2n-1且b1=1,
(1)求證:數(shù)列{an}是等比數(shù)列;
(2)若對于區(qū)間[0,1]上的任意實數(shù)λ,總存在不小于2的自然數(shù)k,當n≥k時,bn≥(1-λ)(3n-2)恒成立,求k的最小值.

解:(1)當n≥2時,整理得an=pan-1
恒有an>0從而數(shù)列an等比數(shù)列
(2)由(1)知an=pnbn+1-bn=logpa2n-1=2n-1∴bn=(bn-bn-1)+(bn-1-bn-2)++(b2-b1)+b1=n2-2n+2
∴(n2-2n+2)≥(1-λ)(3n-2)變形為(3n-2)λ+n2-5n+4≥0在λ∈[0,1]時恒成立
記f(λ)=(3n-2)λ+n2-5n+4則有:或n≤1但由于n≥2∴n≥4
綜上知:k的最小值為4
分析:(1)當n≥2時,,整理得an=pan-1,由an>0,知,故數(shù)列{an}等比數(shù)列.
(2)由an=pnbn+1-bn=logpa2n-1=2n-1,知bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1=n2-2n+2,故(n2-2n+2)≥(1-λ)(3n-2),變形為(3n-2)λ+n2-5n+4≥0在λ∈[0,1]時恒成立.由此能求出k的最小值.
點評:本題考查數(shù)列的性質和應用,解題時要認真審題,注意挖掘題設中的隱含條件,注意等比數(shù)列的證明.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知常數(shù)p>0且p≠1,數(shù)列{an}前n項和Sn=
p1-p
(1-an)
數(shù)列{bn}滿足bn+1-bn=logpa2n-1且b1=1,
(1)求證:數(shù)列{an}是等比數(shù)列;
(2)若對于區(qū)間[0,1]上的任意實數(shù)λ,總存在不小于2的自然數(shù)k,當n≥k時,bn≥(1-λ)(3n-2)恒成立,求k的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,平面中兩條直線l1和l2相交于點O,對于平面上任意一點M,若p,q分別是M到直線l1和l2的距離,則稱有序非負實數(shù)對(p,q)是點M的“距離坐標”,已知常數(shù)p≥0,q≥0,給出下列三個命題:

①若p=q=0,則“距離坐標”為(0,0)的點有且僅有1個.

②若pq=0,且p+q≠0,則“距離坐標”為(p,q)的點有且僅有2個.

③若pq≠0,則“距離坐標”為(p,q)的點有且僅有4個.

上述命題中,正確命題的個數(shù)是(    )

A.0                    B.1                   C.2                  D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,平面中兩條直線l1和l2相交于點O,對于平面上任意一點M,若p,q分別是M到直線l1和l2的距離,則稱有序非負實數(shù)對(p,q)是點M的“距離坐標”,已知常數(shù)p≥0,q≥0,給出下列三個命題:

①若p=q=0,則“距離坐標”為(0,0)的點有且僅有1個.

②若pq=0,且p+q≠0,則“距離坐標”為(p,q)的點有且僅有2個.

③若pq≠0,則“距離坐標”為(p,q)的點有且僅有4個.

上述命題中,正確命題的個數(shù)是(    )

A.0                    B.1                   C.2                  D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,平面中兩條直線l1和l2相交于點O,對于平面上任意一點M,若p,q分別是M到直線l1和l2的距離,則稱有序非負實數(shù)對(p,q)是點M的“距離坐標”,已知常數(shù)p≥0,q≥0,給出下列三個命題:

①若p=q=0,則“距離坐標”為(0,0)的點有且僅有1個.

②若pq=0,且p+q≠0,則“距離坐標”為(p,q)的點有且僅有2個.

③若pq≠0,則“距離坐標”為(p,q)的點有且僅有4個.

上述命題中,正確命題的個數(shù)是(    )

A.0                    B.1                   C.2                  D.3

查看答案和解析>>

同步練習冊答案