【題目】如圖,在四棱錐,平面,,且,,.

(1)取中點(diǎn),求證:平面

(2)求直線所成角的余弦值.

(3)在線段上,是否存在一點(diǎn),使得二面角的大小為,如果存在,求與平面所成角,如果不存在,請說明理由.

【答案】(1)見解析(2) (3)見解析

【解析】

試題分析:(1)建立如圖所示的坐標(biāo)系,先求的方向向量,再出利用向量垂直數(shù)量積為零,列方程組求出平面的法向量,由可得結(jié)果;(2)分別求出直線的方向向量,利用空間向量夾角余弦公式可得直線所成角的余弦值(結(jié)果注意取絕對值);(3),分別根據(jù)向量垂直數(shù)量積為零列方程組求出平面與平面的一個(gè)法向量,根據(jù)空間向量夾角余弦公式,可得,從而可確定的坐標(biāo),利用可得結(jié)果.

試題解析:如圖建系:

,,,,

(1)中點(diǎn),

,

設(shè)平面的法向量為,由,

可得:,∴,∵平面

平面.

(2),

.

(3)設(shè),

設(shè)平面的法向量為,

,可得,

平面的法向量為,

,

解得.

,∴,

,∴.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求下列函數(shù)的單調(diào)區(qū)間.

(1)f(x)=(x∈[-2,4]);

(2)y.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12)

已知函數(shù)(其中a是實(shí)數(shù)).

(1)求的單調(diào)區(qū)間;

(2)若設(shè),且有兩個(gè)極值點(diǎn) ,求取值范圍.(其中e為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給定函數(shù),若存在常數(shù),使得函數(shù)對其公共定義域的任何實(shí)數(shù)分別滿足,則稱直線為函數(shù)隔離直線,給出下列四組函數(shù):

1,; 2;

3; 4,

其中函數(shù)存在隔離直線的序號是(

A.1)(3B.1)(3)(4C.1)(2)(3D.2)(4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】春節(jié)過后,甲、乙、丙三人談?wù)摰接嘘P(guān)部電影,,的情況.

甲說:我沒有看過電影,但是有部電影我們?nèi)齻(gè)都看過;

乙說:三部電影中有部電影我們?nèi)酥兄挥幸蝗丝催^;

丙說:我和甲看的電影有部相同,有部不同.

假如他們都說的是真話,則由此可判斷三部電影中乙看過的部數(shù)是(

A.B.C.D.部或

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查某大學(xué)學(xué)生的某天上網(wǎng)的時(shí)間,隨機(jī)對名男生和名女生進(jìn)行了不記名的問卷調(diào)查.得到了如下的統(tǒng)計(jì)結(jié)果:

1:男生上網(wǎng)時(shí)間與頻數(shù)分布表

上網(wǎng)時(shí)間(分鐘)

人數(shù)

2:女生上網(wǎng)時(shí)間與頻數(shù)分布表

上網(wǎng)時(shí)間(分鐘)

人數(shù)

1)用分層抽樣在選取人,再隨機(jī)抽取人,求抽取的人都是女生的概率;

2)完成下面的列聯(lián)表,并回答能否有的把握認(rèn)為“大學(xué)生上網(wǎng)時(shí)間與性別有關(guān)”?

上網(wǎng)時(shí)間少于分鐘

上網(wǎng)時(shí)間不少于分鐘

合計(jì)

男生

女生

合計(jì)

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三角形的三個(gè)頂點(diǎn)的坐標(biāo)分別為,,則該三角形的重心(三邊中線交點(diǎn))的坐標(biāo)為.類比這個(gè)結(jié)論,連接四面體的一個(gè)頂點(diǎn)及其對面三角形重心的線段稱為四面體的中線,四面體的四條中線交于一點(diǎn),該點(diǎn)稱為四面體的重心.若四面體的四個(gè)頂點(diǎn)的空間坐標(biāo)分別為,,則該四面體的重心的坐標(biāo)為( )

A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖像過點(diǎn),且在處取得極值.

(1)若對任意恒成立,求實(shí)數(shù)的取值范圍;

(2)當(dāng),試討論函數(shù)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著生活節(jié)奏的加快以及智能手機(jī)的普及,外賣點(diǎn)餐逐漸成為越來越多用戶的餐飲消費(fèi)習(xí)慣.由此催生了一批外賣點(diǎn)餐平臺,已知某外賣平臺的送餐費(fèi)用與送餐距離有關(guān)(該平臺只給5千米范圍內(nèi)配送),為調(diào)査送餐員的送餐收入,現(xiàn)從該平臺隨機(jī)抽取80名點(diǎn)外賣的用戶進(jìn)行統(tǒng)計(jì),按送餐距離分類統(tǒng)計(jì)結(jié)果如下表:

以這80名用戶送餐距離位于各區(qū)間的頻率代替送餐距離位于該區(qū)間的概率.

(1)從這80名點(diǎn)外賣的用戶中任取一名用戶.求該用戶的送餐距離不超過3千米的概率;

(2)試估計(jì)利用該平臺點(diǎn)外賣用戶的平均送餐距離;

(3)若該外賣平臺給送餐員的送餐贄用與送餐距離有關(guān),規(guī)定2千米內(nèi)為短距離,每份3元,2千米到4千米為中距離,每份5元;超過4千米為遠(yuǎn)距離,每份9元,若送餐員一天的目標(biāo)收 人不低于150元,試估計(jì)一天至少要送多少份外賣?

查看答案和解析>>

同步練習(xí)冊答案