某高中為了推進(jìn)新課程改革,滿足不同層次學(xué)生的需求,決定從高一年級(jí)開始,在每周的周一、周三、周五的課外活動(dòng)期間同時(shí)開設(shè)數(shù)學(xué)、物理、化學(xué)、生物和信息技術(shù)輔導(dǎo)講座,每位有興趣的同學(xué)可以在期間的任何一天參加任何一門科目的輔導(dǎo)講座,也可以放棄任何一門科目的輔導(dǎo)講座。(規(guī)定:各科達(dá)到預(yù)先設(shè)定的人數(shù)時(shí)稱為滿座,否則稱為不滿座)統(tǒng)計(jì)數(shù)據(jù)表明,各學(xué)科講座各天的滿座的概率如下表:

根據(jù)上表:
(Ⅰ)求數(shù)學(xué)輔導(dǎo)講座在周一、周三、周五都不滿座的概率;
(Ⅱ)設(shè)周三各輔導(dǎo)講座滿座的科目數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

(I);
(II)隨機(jī)變量的分布列如下:


0
1
2
3
4
5







.

解析試題分析:(I)數(shù)學(xué)輔導(dǎo)講座在周一、周三、周五都不滿座即為這三個(gè)事件同時(shí)發(fā)生,獨(dú)立事件同時(shí)發(fā)生的概率等于這三個(gè)事件的概率之積,由此即得公式得數(shù)學(xué)輔導(dǎo)講座在周一、周三、周五都不滿座這個(gè)事件的概率.(II)首先弄清楚可以取哪此值.因?yàn)榭偣灿?科,所以可能取的值最多為5,即可取0、1、2、3、4、5.然后由獨(dú)立事件同時(shí)發(fā)生的概率公式一一求出各隨機(jī)變量的概率,便可得其分布列,進(jìn)而得其期望.
試題解析:(I)設(shè)數(shù)學(xué)輔導(dǎo)講座在周一、周三、周五都不滿座為事件A,
           4分
(II)的可能值得為0,1,2,3,4,5





           10分
所以隨機(jī)變量的分布列如下:


0
1
2
3
4
5







     12分
考點(diǎn):1、獨(dú)立事件同時(shí)發(fā)生的概率;2、隨機(jī)變量的分布列及其期望.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在一個(gè)花瓶中裝有6枝鮮花,其中3枝山茶花,2枝杜鵑花和1枝君子蘭,從中任取2枝鮮花.
(1)求恰有一枝山茶花的概率;
(2)求沒有君子蘭的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了參加2013年市級(jí)高中籃球比賽,該市的某區(qū)決定從四所高中學(xué)校選出人組成男子籃球隊(duì)代表所在區(qū)參賽,隊(duì)員來源人數(shù)如下表:

學(xué)校
學(xué)校甲
學(xué)校乙
學(xué)校丙
學(xué)校丁
人數(shù)




該區(qū)籃球隊(duì)經(jīng)過奮力拼搏獲得冠軍,現(xiàn)要從中選出兩名隊(duì)員代表冠軍隊(duì)發(fā)言.
(Ⅰ)求這兩名隊(duì)員來自同一學(xué)校的概率;
(Ⅱ)設(shè)選出的兩名隊(duì)員中來自學(xué)校甲的人數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對(duì)本班50人進(jìn)行了問卷調(diào)查得到了如下列表:

 
喜愛打籃球
不喜愛打籃球
合計(jì)
男生
 
5
 
女生
10
 
 
合計(jì)
 
 
50
已知在全部50人中隨機(jī)抽取1人抽到喜愛打籃球的學(xué)生的概率為
(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整(不用寫計(jì)算過程);
(2)能否在犯錯(cuò)誤的概率不超過0.005的前提下認(rèn)為喜愛打籃球與性別有關(guān)?說明你的理由;
(3)現(xiàn)從女生中抽取2人進(jìn)一步調(diào)查,設(shè)其中喜愛打籃球的女生人數(shù)為ξ,求ξ的分布列與期望.
下面的臨界值表供參考:
P(K2≥k)
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k
2.072
2.706
3.841
5.024
6.635
7.879
10.828
(參考公式:K2=,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

據(jù)民生所望,相關(guān)部門對(duì)所屬服務(wù)單位進(jìn)行整治行核查,規(guī)定:從甲類3個(gè)指標(biāo)項(xiàng)中隨機(jī)抽取2項(xiàng),從乙類2個(gè)指標(biāo)項(xiàng)中隨機(jī)抽取1項(xiàng).在所抽查的3個(gè)指標(biāo)項(xiàng)中,3項(xiàng)都優(yōu)秀的獎(jiǎng)勵(lì)10萬元;只有甲類2項(xiàng)優(yōu)秀的獎(jiǎng)勵(lì)6萬元;甲類只有1項(xiàng)優(yōu)秀、乙類1項(xiàng)優(yōu)秀的提出警告,有2項(xiàng)或2項(xiàng)以上不優(yōu)秀的停業(yè)運(yùn)營并罰款8萬元.已知某家服務(wù)單位甲類3項(xiàng)指標(biāo)項(xiàng)中有2項(xiàng)優(yōu)秀,乙類2項(xiàng)指標(biāo)項(xiàng)中有1項(xiàng)優(yōu)秀.
求:(1)這家單位受到獎(jiǎng)勵(lì)的概率;
(2)這家單位這次整治性核查中所獲金額的均值(獎(jiǎng)勵(lì)為正數(shù),罰款為負(fù)數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

學(xué)校舉行演講比賽,高二(12)班有4名男同學(xué)和3名女同學(xué)都很想?yún)⒓舆@次活動(dòng),現(xiàn)從中選一名男同學(xué)和一名女同學(xué)代表本班參賽,求女同學(xué)甲參賽的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

小波以游戲方式?jīng)Q定:是去打球、唱歌還是去下棋.游戲規(guī)則為:以O(shè)為起點(diǎn),再從A1,A2,A3,A4,A5,A6(如圖)這6個(gè)點(diǎn)中任取兩點(diǎn)分別為終點(diǎn)得到兩個(gè)向量,記這兩個(gè)向量的數(shù)量積為X,若就去打球;若就去唱歌;若就去下棋.

(Ⅰ)分別求小波去下棋的概率和不去唱歌的概率.
(Ⅱ)寫出數(shù)量積X的所有可能取值,并求X分布列與數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一個(gè)袋子里裝有7個(gè)球,其中有紅球4個(gè), 編號(hào)分別為1,2,3,4;白球3個(gè),編號(hào)分別為1,2,3.從袋子中任取4個(gè)球(假設(shè)取到任何一個(gè)球的可能性相同).
(Ⅰ)求取出的4個(gè)球中, 含有編號(hào)為3的球的概率;
(Ⅱ)在取出的4個(gè)球中, 紅球編號(hào)的最大值設(shè)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

學(xué)校游園活動(dòng)有這樣一個(gè)游戲項(xiàng)目:甲箱子里裝有3個(gè)白球,2個(gè)黑球,乙箱子里裝有1個(gè)白球,2個(gè)黑球,這些球除顏色外完全相同.每次游戲從這兩個(gè)箱子里各隨機(jī)摸出2個(gè)球,若摸出的白球不少于2個(gè),則獲獎(jiǎng)(每次游戲結(jié)束后將球放回原箱).
(1)求在1次游戲中:
①摸出3個(gè)白球的概率;②獲獎(jiǎng)的概率.
(2)求在兩次游戲中獲獎(jiǎng)次數(shù)X的分布列及數(shù)學(xué)期望E(X).

查看答案和解析>>

同步練習(xí)冊答案