已知命題p,命題q. 若“pq”為真命題,求實數(shù)m的取值范圍.

 

【答案】

的取值范圍是

【解析】本試題主要是考查了命題的真假的判定,以及指數(shù)不等式和二次方程的根的問題的綜合運用。利用指數(shù)函數(shù)的性質得到參數(shù)m的范圍,再結合二次方程有解,得到參數(shù)m的范圍,則都是真命題時,取其交集即可

解:由,知,,   --------4分

,即.         --------6分

又由,,得,

,-----10分

由題意,     -------12分

由“”為真命題,知都是真命題, 所以,符合題意的的取值范圍是

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知命題p:?x∈R,使2x2+(k-1)x+
1
2
≤0
;命題q:方程
x2
9-k
+
y2
k-1
=1
表示焦點x軸上的橢圓,若¬p為真命題,p∨q為真命題,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:x2+x+2-m=0有一正一負兩根,命題q:4x2+4(m-2)x+1=0無實根,若命題p與命題q有且只有一個為真,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•通州區(qū)一模)已知命題p是真命題,命題q是假命題,那么下列命題中是假命題的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:“方程
x2
9-k
+
y2
k-1
=1
表示焦點在x軸上的橢圓”,命題q:“方程
x2
2-k
+
y2
k
=1
表示雙曲線”.
(1)若p是真命題,求實數(shù)k的取值范圍;
(2)若q是真命題,求實數(shù)k的取值范圍;
(3)若“p∨q”是真命題,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:;命題q:,則下列命題為真命題的是                            ()

A. p∧q              B. p∨(﹁q)          C. (﹁p)∧q        D. p∧(﹁q)

查看答案和解析>>

同步練習冊答案