11.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x-2,x<1}\\{2x-3,x≥1}\end{array}\right.$,若f(x0)=1,則x0=( 。
A.-1或3B.2或3C.-1或2D.-1或2或3

分析 利用分段函數(shù)的解析式,列出方程求解即可.

解答 解:函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x-2,x<1}\\{2x-3,x≥1}\end{array}\right.$,f(x0)=1,
當(dāng)x0<1時(shí),x02-2x0-2=1,解得x0=-1.
當(dāng)x0≥1時(shí),2x0-3=1,解得x0=2.
故選:C.

點(diǎn)評(píng) 本題考查分段函數(shù)的應(yīng)用,函數(shù)的零點(diǎn)的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.定義在(-2,2)上的函數(shù)f(x)既為減函數(shù),又為奇函數(shù),解關(guān)于a的不等式f(a+1)+f(2a-3)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若指數(shù)函數(shù)f(x)=ax在區(qū)間[1,2]的最大值與最小值的差為$\frac{a}{2}$,則a=a=$\frac{1}{2}$或$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.分別求下列函數(shù)的導(dǎo)函數(shù)及在x=1處的導(dǎo)數(shù).
(1)y=$\frac{4}{{x}^{2}}$;
(2)y=$\frac{1}{x}$-$\sqrt{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.(1)已知命題p:2x2-3x+1≤0和命題q:x2-(2a+1)x+a(a+1≤0),若?p是?q的必要不充分條件,求實(shí)數(shù)a的取值范圍.
(2)已知p:關(guān)于x的方程x2+mx+1=0有兩個(gè)不相等的負(fù)實(shí)根;q:關(guān)于x的不等式4x2+4(m-2)x+1>0的解集為R.若“p∨q”為真命題,“p∧q”為假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知函數(shù)f(x)=$\sqrt{1-ax}$在區(qū)間[-1,+∞)有意義,則實(shí)數(shù)a的取值范圍是[-1,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=ax2-2ax+2+a(a<0),若f(x)在區(qū)間[2,3]上有最大值1.
(1)求a的值;
(2)若g(x)=f(x)-mx在[2,4]上單調(diào),求數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,已知曲線(xiàn)C的極坐標(biāo)方程為ρsin2θ=4cosθ;(1)求曲線(xiàn)C的直角坐標(biāo)方程;
(2)若直線(xiàn)l的參數(shù)方程為$\left\{\begin{array}{l}x=1+\frac{2}{{\sqrt{5}}}t\\ y=1+\frac{1}{{\sqrt{5}}}t\end{array}\right.$(t為參數(shù)),設(shè)點(diǎn)P(1,1),直線(xiàn)l與曲線(xiàn)C相交于A,B兩點(diǎn),求|PA|+|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,已知$tan(A-\frac{π}{6})=\frac{{\sqrt{3}}}{3}$.
(Ⅰ) 求A;
(Ⅱ)若a=$\sqrt{7}$,b=2,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案