(本小題12分)如圖,四邊形ABCD是邊長為1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,E是MN的中點(diǎn)。
(1)求證:平面AEC⊥平面AMN; (6分)
(2)求二面角M-AC-N的余弦值。 (6分)
(1)略
(2)
【解析】方法一、傳統(tǒng)幾何
(1)MD⊥平面ABCD,NB⊥平面ANCD,由直角三角形易得:AM=AN=MN=NC=MC=,E是MN中點(diǎn),可得AE⊥MN,CE⊥MN,又AE∩EC=E從而MN⊥平面AEC;
(2)這里也有多種方法:
連接BD交AC與點(diǎn)O,底面是正方形得AC⊥BD,OE//MD推得OE⊥AC,得AC⊥平面MDBN,所以∠MON就是二面角M-AC-N的平面角,在矩形MDBN中根據(jù)長度可以求得cos∠MON=。
(亦可把二面角M-AC-N,拆成兩個二面角M-AC-E和E-AC-N;或者抽取出正四面體MNAC,再求側(cè)面與地面所成角;或者求平面ACN的垂線MB和平面ACM的垂線DN之間的夾角)
方法二、向量幾何
MD⊥平面ABCDMD⊥DA,MD⊥DC,又底面ABCD為正方形DA⊥DC,故以點(diǎn)D為坐標(biāo)原點(diǎn),DA為x軸,DC為y軸,DM為z軸,如圖建立空間直角坐標(biāo)系。
則各點(diǎn)的坐標(biāo)A(1,0,0),B(1,1,0),C(0,1,0),M(0,0,1),N(1,1,1),
E(,,1) ……3分
(1) ·=…=0MN⊥AE;
·=…=0MN⊥AC
又AC∩AE=E,故MN⊥平面AEC; ………7分
(2)不妨設(shè)平面AMC的法向量為=(1,y,z),平面ANC的法向量為=(1,m,n) 則由⊥,⊥·=0,·=0,代入坐標(biāo)解得=(1,1,1)---9分
由⊥,⊥·=0,·=0,代入坐標(biāo)運(yùn)算得=(1,1,-1)--11分
Cos<,>== -------12分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖南省常德市高三質(zhì)量檢測考試數(shù)學(xué)理卷 題型:解答題
(本小題12分)
如圖3,已知在側(cè)棱垂直于底面
的三棱柱中,AC=BC, AC⊥BC,點(diǎn)D是A1B1中點(diǎn).
(1)求證:平面AC1D⊥平面A1ABB1;
(2)若AC1與平面A1ABB1所成角的正弦值
為,求二面角D- AC1-A1的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年河北省高三高考壓軸模擬考試文數(shù) 題型:解答題
(本小題12分)如圖,四棱錐中,
側(cè)面是邊長為2的正三角形,且與底面垂直,底面是的菱形,為的中點(diǎn).
(1)求與底面所成角的大小;
(2)求證:平面;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆海南省高一上學(xué)期教學(xué)質(zhì)量監(jiān)測三數(shù)學(xué) 題型:解答題
(本小題12分)如圖,四棱錐中,底面是正方形,, 底面, 分別在上,且
(1)求證:平面∥平面.
(2)求直線與平面面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年海南省高二下學(xué)期質(zhì)量檢測數(shù)學(xué)文卷(一) 題型:解答題
(本小題12分)
如圖:⊙O為△ABC的外接圓,AB=AC,過點(diǎn)A的直線交⊙O于D,交BC延長線于F,DE是BD的延長線,連接CD。
① 求證:∠EDF=∠CDF;
②求證:AB2=AF·AD。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2009-2010集寧一中學(xué)高三年級理科數(shù)學(xué)第一學(xué)期期末考試試題 題型:解答題
(本小題12分)如圖,四面體ABCD中,O、E分別是BD、BC的中點(diǎn),
(I)求證:平面BCD;
(II)求異面直線AB與CD所成角的大;
(III)求點(diǎn)E到平面ACD的距離。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com