(本小題滿分12分) 如圖,已知平面∩平面=AB,PQ⊥于Q,PC⊥于C,CD⊥于D.
(1)求證:P、C、D、Q四點(diǎn)共面;
(2)求證:QD⊥AB.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分為10分)
在四面體ABCD中作截面PQR,若PQ,CB的延長線交于M;RQ,DB的延長線交于N;RP,DC的延長線交于K,求證:M、N、K三點(diǎn)共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
如圖, 在直三棱柱中,,,.
(1)求證:;
(2)問:是否在線段上存在一點(diǎn),使得平面?
若存在,請證明;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖,在四棱錐中,底面是矩形,平面,,,點(diǎn)為的中點(diǎn),為中點(diǎn).
(1)求證:平面⊥平面;
(2)求直線與平面所成的角的正弦值;
(3)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在四棱錐V-ABCD中,底面ABCD是正方形,側(cè)面VAD是正三角形,平面VAD⊥底面ABCD.
(Ⅰ)證明AB⊥平面VAD;
(Ⅱ)求面VAD與面VDB所成二面角的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
如圖,在四棱錐中,⊥平面,⊥平面,
,。
(1)求證:平面ADE⊥平面ABE;
(2)求二面角A—EB—D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)四棱錐的底面是正方形,,點(diǎn)E在棱PB上.若AB=,
(Ⅰ)求證:平面;
(Ⅱ)若E為PB的中點(diǎn)時(shí),求AE與平面PDB所成的角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,、為圓柱的母線,是底面圓的直徑,、分別是、的中點(diǎn),.
(1)證明:;
(2)求四棱錐與圓柱的體積比;
(3)若,求與面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com