【題目】已知橢圓C: =1(a>b>0)的短軸長為2,離心率e=
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l:y=kx+m與橢圓交于不同的兩點A,B,與圓x2+y2= 相切于點M.
(i)證明:OA⊥OB(O為坐標原點);
(ii)設λ= ,求實數(shù)λ的取值范圍.

【答案】解:(Ⅰ)∵2b=2,∴b=1.
又e= = ,a2=b2+c2 ,
∴a2=2.
∴橢圓C的方程為 ;
(Ⅱ)(i)∵直線l:y=kx+m與圓x2+y2= 相切,
,即
,消去y并整理得,(1+2k2)x2+4kmx+2m2﹣2=0.
設A(x1 , y1),B(x2 , y2),


=
=
= ,
∴OA⊥OB.
(ii)∵直線l:y=kx+m與橢圓交于不同的兩點A,B,

= =
由(Ⅱ)(i)知x1x2+y1y2=0,
∴x1x2=﹣y1y2 ,即

,
∴λ的取值范圍是
【解析】(Ⅰ)由已知得到b=1,結合e= ,即a2=b2+c2求得a2=2,則橢圓方程可求;(Ⅱ)(i)由直線l:y=kx+m與圓x2+y2= 相切,可得 ,即 .聯(lián)立直線方程好橢圓方程,得到A,B橫坐標的和與積,代入可得 ,得到OA⊥OB;(ii)直線l:y=kx+m與橢圓交于不同的兩點A,B,把A,B的坐標代入橢圓方程,可得 .在圓中由垂徑定理可得 = = .結合x1x2+y1y2=0,得到 .由x1 的范圍求得λ的取值范圍.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 =1(a>b>0)經過點P(﹣2,0)與點(1,1).
(1)求橢圓的方程;
(2)過P點作兩條互相垂直的直線PA,PB,交橢圓于A,B.
①證明直線AB經過定點;
②求△ABP面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018年8月31日下午,關于修改個人所得稅法的決定經十三屆全國人大常委會第五次會議表決通過。2018年10月1日起施行最新起征點和稅率。個稅起征點提高至每月5000元.設個人月應納稅所得額為元,個人月工資收入為元,三險金(養(yǎng)老保險、失業(yè)保險、醫(yī)療保險、住房公積金)及其它各類免稅額總計為元,則.設月應納稅額為,個稅的計算方式一般是分級計算求總和 (如圖表所示,共分7級).比如:小陳的應納稅所得額為元,月應交納稅額為元.

稅級

月應納稅所得額

稅率

1

中不超過3000元的部分

3%

2

中超過3000元至12000元(含12000元)的部分

10%

3

中超過12000元至25000元(含25000元)的部分

20%

4

中超過25000元至35000元(含35000元)的部分

25%

5

中超過35000元至55000元(含55000元)的部分

30%

6

中超過55000元至80000元(含80000元)的部分

35%

7

中超過80000元的部分

45%

(1)小王的應納稅所得額元,求

(2)小張的應納稅所得額元,若元,求;

(3)當時,寫出的解析式(請寫成分段函數(shù)的形式).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,求在區(qū)間上的最值;

(2)討論函數(shù)的單調性;

(3)當時,有恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四棱錐P﹣ABCD中,AB∥CD,AB⊥AD,AB=AD=AP=2CD=2,M是棱PB上一點.
(Ⅰ)若BM=2MP,求證:PD∥平面MAC;
(Ⅱ)若平面PAB⊥平面ABCD,平面PAD⊥平面ABCD,求證:PA⊥平面ABCD;
(Ⅲ)在(Ⅱ)的條件下,若二面角B﹣AC﹣M的余弦值為 ,求 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ,若關于x的方程f2(x)﹣bf(x)+c=0(b,c∈R)有8個不同的實數(shù)根,則b+c的取值范圍為(
A.(﹣∞,3)
B.(0,3]
C.[0,3]
D.(0,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是奇函數(shù).

(1)求a的值和函數(shù)f(x)的定義域;

(2)解不等式f(-m2+2m-1)+f(m2+3)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和Sn=﹣an﹣( n1+2(n∈N*),數(shù)列{bn}滿足bn=2nan
(Ⅰ)求證數(shù)列{bn}是等差數(shù)列,并求數(shù)列{an}的通項公式;
(Ⅱ)設cn=log2 ,數(shù)列{ }的前n項和為Tn , 求滿足Tn (n∈N*)的n的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖ABCD是平面四邊形,∠ADB=∠BCD=90°,AB=4,BD=2.
(Ⅰ)若BC=1,求AC的長;
(Ⅱ)若∠ACD=30°,求tan∠BDC的值.

查看答案和解析>>

同步練習冊答案